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Abstract. We use a theorem of Guralnick, Penttila, Praeger, and Saxl to classify the subgroups of
the general linear group (of a finite dimensional vector space over a finite field) which are overgroups
of a cyclic Sylow subgroup. In particular, our results provide the starting point for the classification
of transitive m-systems; which include the transitive ovoids and spreads of finite polar spaces. We also
use our results to prove a conjecture of Cameron and Liebler on irreducible collineation groups having
equally many orbits on points and on lines.

1. Introduction

In 1999, Guralnick et al. [13] produced a classification of subgroups of finite linear groups having non-
trivial intersection with a cyclic Sylow subgroup of that linear group. This result has been applied widely,
for example, to number theory (Abhyankar [1]), computational group theory (Guralnick and Kantor [14],
O’Brien [24]), permutation group theory (Baddeley and Praeger [2]), to maximal overgroups of Singer
elements in classical groups (Bereczky [5]), but has as yet seen little application to geometry, a source of
some disappointment to the second author, as that was the original motivation of his interest in such a
result. While the Guralnick et al result is a powerful tool, it is unwieldy. Since the hypothesis is weak, the
conclusion is long. Our purpose here is to produce tools purpose-built for easier application, by refining
and delineating consequences of that result.

One target is the application to geometric objects under the hypothesis of transitivity. The cardinality
of such objects are generically polynomials in the order of the underlying field, and often this means that
the corresponding groups satisfy stronger hypotheses than that of the Guralnick et al. result; not only
non-trivial intersection with but also containment of a cyclic Sylow subgroup of the full linear group, and
indeed containment of any cyclic Sylow subgroup centralising the first. Our first theorem classifies such
subgroups of linear groups – the hypotheses are less convoluted in terms of primitive parts dividing the
order of the subgroup. The conclusions that result are much shorter, giving a tool that is far easier to
wield. At the end of the paper, we apply this result to prove a conjecture of Cameron and Liebler from
1982, showing that any irreducible subgroup of a projective semilinear group in (algebraic) dimension
at least four which has equally many orbits on lines and on points of the associated projective space, is
transitive on lines and hence known.

The applications we consider in two sequel papers ([3] and [4]) involve geometric objects with size of
the form pn +1 where p is the characteristic of the underlying field. (These objects are eggs of projective
spaces; and ovoids, spreads, and m-systems of polar spaces.) Moreover, in the last three cases, the
groups involved are subgroups of symplectic, orthogonal and unitary groups, and the cardinality is the
ovoid number of the polar space. A further delineation of the possible subgroups in the symplectic and
orthogonal cases appears as our second theorem. The hypotheses are again purely numerical: we have
a subgroup of the similarity group of a non-degenerate form which has a subgroup of index dividing
a particular polynomial in the field order. This weakening of the hypothesis to “dividing” allows the
application of the results to projective semisimilarity groups. The third and fourth theorems deal with
the unitary case, where the ovoid number is the successor of a power of the characteristic of the underlying
field, but not the successor of a power of the field order, so a slightly different tack is taken. These sequel
papers lead to a complete classification of transitive eggs, ovoids, m-systems and spreads, provided the
group is not metacyclic (i.e., the objects are known or the group is dull, as Kantor put it in another
context). Many partial results in these directions are subsumed in this work, most of which required
similarly heavy use of group theory.

We would like to thank Michael Giudici for many fruitful and stimulating conversations. This work forms part of an
Australian Research Council Discovery Grant, for which the first author was supported.
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The authors hope that these examples will inspire others to find further geometric applications of these
ideas.

An essential part of our approach is to use strong information concerning the order of a linear group.
A prime number r dividing qe − 1 is a primitive prime divisor of qe − 1 if r does not divide qi − 1
for i smaller than e, or equivalently, q has order e modulo r. Zsigmondy proved in [28] that if q is an
integer greater than 1, and if e is a positive integer such that qe − 1 has no primitive prime divisors, then
qe = pe = 26 or e = 2. It turns out that primitive prime divisors play an important role in the behaviour
of linear groups, since they tell us something about the irreducibility of the Sylow p-subgroups of linear
groups. The result of Guralnick et al. is remarkably strong in that it essentially classifies those subgroups
of GLd(q) which have an element whose order is a primitive prime divisor of qe − 1 (and d/2 < e 6 d).
In many situations, such as when we have a linear group G acting transitively on qn + 1 points, we have
stronger information than the existence of primitive prime divisors. A divisor r of qe − 1 that is coprime
to each qi − 1 for i < e is said to be a primitive divisor, and we call the largest primitive divisor Φ∗

e(q) of
qe − 1 the primitive part. One should note that Φ∗

e(q) is strongly related to cyclotomy in that it is equal
to the quotient of the cyclotomic number Φe(q) and gcd(e, Φe(q)) when e > 2. Now Φ∗

e(q) is congruent
to 1 modulo e, and in many cases, it is either equal to e + 1 or 2e + 1. In this situation, we can use a
result in Hering’s 1974 paper [15] to determine the possible values of q and e, and we do so extensively
in this paper.

In the next section, we list some definitions and notation that will be used throughout this paper. In
particular, we use notation consistent with [13] and [19]. In Section 3, we state the two main theorems
of this paper; Theorem 3.1 describes the subgroups of GLd(p

f ) divisible by the primitive part of pef − 1
(where d/2 6 e < d) and Theorem 3.2 gives more information for subgroups of GLd(p

f ) which have
a subgroup of index dividing qe/2 + 1. In Sections 4 and 5, we give corollaries of our main results for
classical groups. Sections 6 and 7 are on the proofs of our two main results, which are finally followed by
Section 8 where we give an affirmative proof of Cameron and Liebler’s conjecture.

2. Notation

Our notation for classical groups will be consistent with that used in [19] and [13]. Here is a table
which gives a summary of the various symbols used for certain classical groups (see also [19, Table 2.1.B]).

Table 1. A summary of the notation used for classical groups.

Type Semi-similarities Similarities Isometries Isom. det. 1
Linear ΓL GL GL SL
Unitary ΓU GU SU
Symplectic ΓSp GSp Sp Sp
Orthogonal ΓOǫ GOǫ Oǫ SOǫ

Here ǫ denotes +, −, or ◦, and the unitary similarity group is precisely the unitary isometry group
extended by the full group of scalars. We will also use Ωǫ

d(q) for the index 2 subgroup of SOǫ
d(q), and the

prefix “P” will denote the associated projective representation.
We will use the notation Vd(q) to denote a d-dimensional vector space over the field of order q.

Throughout, if b is a divisor d, we will use ΓL#
d/b(q

b) to denote the stabiliser of the extension field

structure of a vector space Vd/b(q
b) on the vector space Vd(q). That is ΓL#

d/b(q
b) = GLd(q) ∩ ΓLd/b(q

b).

We will also use the notation “H” to be the quotient of the linear group H after factoring out by scalar
matrices (it will be clear what the ambient dimension and field order is). We will be careful in this paper
with our notation for unitary groups. So the projective general unitary group will be denoted PGUd(q

2),
where the field q2 has been deliberately written as such to remind the reader that the objects of this
group are also elements of PGLd(q

2). The standard notation G′ will be used for the derived subgroup of
G, as well as G(∞) for the terminating member of the derived series of G.

3. Statements of Main Theorems

The following theorem is a specialisation of [13, Main Theorem]. Note that if Φ∗
ef (p) is nontrivial and

divides the order of a subgroup G of GLd(q), then by definition, |G| is divisible by a primitive prime
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divisor of pef − 1, which will in turn also be a primitive prime divisor of qe − 1. Hence we can apply [13,
Main Theorem].

Theorem 3.1. Let q = pf where p is a prime, let d and e be integers greater than 2 satisfying d/2 < e 6 d.
If a subgroup G of GLd(q) has order divisible by Φ∗

ef (p), and Φ∗
ef (p) > 1, then one of the following occurs:

Classical examples: We have that G preserves a non-degenerate sesquilinear form on the vector space
Vd(q), and one of the following holds:

(a) SLd(q) P G;
(b) Spd(q) P G;
(c) q is a square, SUd(q) P G, and e is odd;
(d) Ωǫ

d(q) P G where ǫ = ± for d even, and ǫ = ◦ when dq odd.

Reducible examples:

We have that G fixes a subspace or quotient space U of Vd(q) and dim(U) = m > e. So G 6

qm(d−m) · (GLm(q) × GLd−m(q)) and Φ∗
ef (p) divides |GU |.

Imprimitive examples:

Here q = p, Φ∗
e(p) = e + 1, and G preserves a direct sum decomposition V = U1

⊕

· · ·
⊕

Ud where
each Ui has dimension 1. Moreover, G 6 GL1(q) ≀Sd in product action, and G induces a primitive group
on the factors {U1, . . . , Ud}. The possible values of q, e and d are listed in the table below.

q e d q e d

2 4 5, 6, 7 3 4 5, 6, 7
2 10 11, . . . , 19 3 6 7, . . . , 11
2 12 13, . . . , 23 5 6 7, . . . , 11
2 18 19, . . . , 35

Extension field examples:

Here we have that there is a divisor b of gcd(d, e), b 6= 1, such that G preserves on Vd(q) a field

extension structure of a vector space Vd/b(q
b). Therefore G 6 ΓL#

d/b(q
b) and we have two subcases

according to whether Φ∗
ef (p) is coprime to b or not:

(a) In this case, we have q = p, Φ∗
e(p) = b = d = e + 1, G 6 ΓL#

1 (qd), and pe = 24, 210, 212, 218, 34,
36, 56.

(b) Here, we have that Φ∗
ef (p) is coprime to b. If G preserves a non-degenerate sesquilinear form f

on Vd(q), then it either preserves a form of the same type on Vd/b(q
b), or b = 2 and G preserves

a form f ′ on Vd/2(q
2) correspondingly:

f ′ f comments

unitary symplectic q odd

unitary orthogonal, type (−)d/2 –

orthogonal, type ◦ orthogonal, all types qd/2 odd, e 6 d − 2

Moreover, Φ∗
ef (p) divides |G ∩ GLd/b(q

b)| and G ∩ GLd/b(q
b) satisfies the hypotheses of this

theorem if we let d/b, e/b, and qb play the roles of d, e, and q respectively.

Symplectic type examples:

Here q = p, Φ∗
e(p) = e + 1, and G normalises an extraspecial 2-group. Specifically, we have one of the

following:

(a) p = 3, e = d = 4, and G 6 (21+4
− · O−

4 (2)) ◦ 2.

(b) p = 3, d = 8, e = 6 and G 6 (21+6
+ · O+

6 (2)) ◦ 2.

(c) p = 5, d = 8, e = 6 and either G 6 ((4 ◦ 21+6) · Sp6(2)) ◦ 4 or G 6 (21+6
+ · O+

6 (2)) ◦ 4.

Nearly simple case:

In this case, S 6 G 6 Aut(S) where S is a finite nonabelian simple group. Let Z be the group of
non-singular matrices of GLd(q). We have four families in this case.

Alternating group case:

(a) Permutation module examples: Here An 6 G 6 Sn × Z and the vector space Vd(q) can be identified
with the fully deleted permutation module for Sn over GF(q). We have that d is n−1 or n−2 (according to
whether p does not or does divide n respectively), q = p, Φ∗

e(p) = e+1, and pe = 24, 210, 212, 218, 34, 36, 56.
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(b) Other examples: These examples do note arise from the action of An on its fully deleted permutation
module. We have one of the following possibilities for d, e, and q:

n d e q Φ∗
ef (p) n d e q Φ∗

ef (p)

10 8 6 5 7 7 8 6 5 7

9 8 6 3 7 7 4 4 7 25

9 8 6 5 7 7 4 3 2 7

8 8 6 3 7 7 4 4 2 5

8 8 6 5 7 7 4 3 9 7

8 4 3 2 7 7 4 3 25 7

8 4 4 2 5 7 3 3 25 7

Sporadic simple group case:

Here S is a sporadic simple group and one of the following holds:
G′ d e q Φ∗

ef (p) G′ d e q Φ∗
ef (p)

M11 5 4 3 5 2 · M22 10 10 2 11

M11 10 10 2 11 M23 11 10 2 11

M12 10 10 2 11 M24 11 10 2 11

2 · M12 6 4 3 5 J1 20 18 2 19

M22 10 10 2 11 2 · J2 6 6 5 7

3 · M22 6 5 4 11 3 · J3 9 9 4 19

Cross-characteristic case:

We have one of the following:
S d e q Φ∗

ef (p) S d e q Φ∗
ef (p) S d e q Φ∗

ef (p)

PSL2(7) 6,7 6 3 7 PSL2(13) 6 6 4 13 PSL3(4) 8 6 5 7

6,7,8 6 5 7 PSL2(17) 8 8 2 17 PSU3(3
2) 6,7 6 5 7

3 3 2 7 PSL2(19) 9 9 4 19 PΩ+
8 (2) 8 6 3 7

3,4 3 9 7 20 18 2 19 8 6 5 7

3,4 3 25 7 PSL2(23) 11 10 2 11 Sp6(2) 7 4 3 5

PSL2(8) 7 6 3 7 PSL2(25) 12 12 2 13 7,8 6 3 7

7,8 6 5 7 PSL2(37) 18 18 2 19 7,8 6 5 7

PSL2(9) 4 4 2 5 PSL2(41) 20 20 2 41 PSp4(5) 12 12 2 13

PSL2(11) 10 10 2 11 PSL3(3) 12 12 2 13 Sz(8) 8 6 5 7

5 5 4 11 PSL3(4) 4 3 9 7 G2(3) 14 12 2 13

PSL2(13) 14 12 2 13 6 4 3 5

6,7 6 3 7 6 6 3 7

Natural-characteristic case:

One of the following occurs:
G(∞) d e Conditions G(∞) d e Conditions

SL2(q3) 8 6 – PSU3(q2) 8 6 p 6= 3
SL3(q2) 9 6 q ≡ 1 (mod 3) 7 6 p = 3

PSL3(q
2) 9 6 q 6= 1 (mod 3) Sz(

√
q) 4 4 p = 2, f even

2 · Ω7(q) 8 6 p odd Sz(q) 4 4 p = 2
Sp6(q) 8 6 p = 2 2G2(

√
q) 7 6 p = 3, f even

G2(q) 7 6 p odd 2G2(q) 7 6 p = 3
6 6 p = 2

As mentioned in the introduction, in geometric applications such as in studying transitive m-systems
or transitive eggs of finite polar spaces, one is interested in linear groups which have a subgroup whose
index divides the successor of a power of the field order. In particular, if G is a group of collineations
acting transitively on an m-system or egg, then we have that G ∩ PGLd(q) has a subgroup, namely
H ∩ PGLd(q) of index (qe/2 + 1)/x where e is some positive integer and x is coprime to Φ∗

e(q). It turns
out that we can determine the structure of G and H in great detail.

Theorem 3.2. Let q be a power of a prime p, let d and e be integers greater than 2 satisfying d−2 6 e 6 d
and suppose e is even. If a subgroup G of GLd(q) has a subgroup H of index (qe/2 + 1)/x where x is
coprime to Φ∗

e(q) and (q, e) 6= (2, 6), then one of the following occurs:

Classical examples: We have that d = e = 4, x = 1, and Ω−
4 (q) P G.

Reducible examples: Here, e = d − 2, d − 1. We have that G fixes a subspace or quotient space U
of Vd(q) and dim(U) = m > e. So G 6 qm(d−m) · (GLm(q) × GLd−m(q)), Φ∗

e(q) divides |GU |, and GU

has a subgroup of index (qe/2 + 1)/y, with Φ∗
e(q) coprime to y. Hence GU satisfies the hypotheses of this

theorem if we substitute m for d in the hypothesis.

Imprimitive examples: Here G preserves a direct sum decomposition V = U1

⊕ · · ·⊕Ud where each
Ui has dimension 1. Moreover, G is a subgroup of GL1(q)≀Sd in product action, and G induces a primitive
group on the factors {U1, . . . , Ud}. Finally, either

(q, e, d) ∈ {(3, 4, 5), (3, 4, 6), (3, 6, 7), (3, 6, 8), (5, 6, 7), (5, 6, 8)}
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or q = 2, e = 4, x = 1, and G has a unique transitive action on 5 points.

Extension field examples:

Here we have that there is a non-trivial divisor b of gcd(d, e) such that G preserves on Vd(q) a field

extension structure of a vector space Vd/b(q
b). Therefore G 6 ΓL#

d/b(q
b) and we have two subcases:

(a) In this case, b = d = 5, e = 4, q = p ∈ {2, 3}, and G 6 ΓL#
1 (q5). Furthermore, if p = 2, then

x = 1, and if p = 3, we have x = 1, 2.
(b) If G preserves a non-degenerate sesquilinear form f on Vd(q), then it either preserves a form of

the same type on Vd/b(q
b), or b = 2 and G preserves a form f ′ on Vd/2(q

2) correspondingly:

f ′ f comments

unitary symplectic q odd

unitary orthogonal, type (−)d/2 –

orthogonal, type ◦ orthogonal, all types qd/2 odd, e = d − 2

Moreover, G ∩ GLd/b(q
b) has a subgroup of index (qe/2 + 1)/x′ where x′ is coprime to Φ∗

e/b(q
b). So

G∩GLd/b(q
b) satisfies the hypotheses of this theorem if we let d/b, e/b, and qb play the roles of d, e, and

q respectively.

Symplectic type examples:

Here q = p, Φ∗
e(p) = e + 1, and G normalises an extraspecial 2-group. Specifically, we have one of the

following:

(a) p = 3, e = d = 4, and G 6 (21+4
− · O−

4 (2)) ◦ 2. Moreover, G is cyclic of order 10 and H is its
trivial subgroup.

(b) p = 3, d = 8, e = 6 and G 6 (21+6
+ · O+

6 (2)) ◦ 2.

(c) p = 5, d = 8, e = 6 and either G 6 ((4 ◦ 21+6) · Sp6(2)) ◦ 4 or G 6 (21+6
+ · O+

6 (2)) ◦ 4.

Nearly simple case:

We have in this case, S 6 G 6 Aut(S) where S is a finite nonabelian simple group.

Alternating group case:

(a) Permutation module examples: Here An 6 G 6 Sn × Z and the vector space Vd(q) can be identified
with the fully deleted permutation module for Sn over GF(q). We have that d is n−1 or n−2 (according
to whether p does not or does divide n respectively), q = p, and pe = 24, 210, 212, 218, 34, 36, 56. Moreover,
the table below lists all possibilities for G and H with n < 9. The number of times an isomorphism
type of a group appears in a row for the H column is equal to the number of conjugacy classes of that
isomorphism type for H in G.

pe d n G H

24 4 5 S5 S4

A5 A4

34 4 5 S5 D12, A4, S4

A5 S3, A4

6 S6 S3 ≀ S2

A6 32 : 4
36 6 7 S7 A6, S6

A7 A6

56 6 7 S7 (5 : 4) × 2, S5, S5, S5, A5 × 2, A6, S5 × 2, S6

A7 5 : 4, A5, A5, S5, A6

If n > 9, then one of the following holds:

(i) pe = 56, d = 8, n = 9, and G has a unique transitive action on 126 points where H is the
stabiliser in the action on 5-subsets;

(ii) pe = 56, d = 8, n = 10, and G has a unique transitive action on 126 points where H is the
stabiliser of a partition of a set of size 10 into 2 sets of size 5;

(iii) pe = 210, 212, 218, n = Φ∗
e(p) = e + 1, and G has a unique transitive action on |G : H | elements.

(b) Other examples: We have that d = 8, e = 6, q = p, An 6 G 6 Sn and (n, p) ∈ {(10, 5), (9, 5), (8, 3),
(7, 5)}. The number of times an isomorphism type of a group appears in a row for the H column is equal
to the number of conjugacy classes of that isomorphism type for H in G. We have the following data in
each case:
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n x H for G = An H for G = Sn

10 1 (A5 × A5) · 22 S5 ≀ S2

9 1 (A5 × A4) · 2 S5 × S4

8 1 S6 S6 × 2
7 1 Z5 : Z4 (Z5 : Z4) × 2

3 A5, A5 A5 × 2, S5, S5, S5

6 S5 S5 × 2
9 – A6

18 S6 S6

Cross-characteristic case: The table below lists the possibilities for this case. The number of times an
isomorphism type of a group appears in a row for the S ∩ H column is equal to the number of conjugacy
classes of that isomorphism type for S ∩ H in S.

S e q d x S ∩ H S e q d x S ∩ H
PSL2(7),PSL3(2) 6 3 6,7 1 S3 PSL2(19) 18 2 20 3 D20

2 A4, A4, D12, D12 9 A5, A5

4 S4, S4 9 4 9 3 D20

5 6,7,8 3 22, 22, 4 9 A5, A5

6 D8 PSL2(25) 12 2 12 1 S5, S5

9 A4, A4 PSL3(3) 12 2 12 5 32 : 2 · S4, 32 : 2 · S4

18 S4, S4 PSL3(4) 6 5 8 1 24 : D10, 24 : D10

PSL2(8) 6 3 7 1 9 : 2 6 24 : A5, 24 : A5

5 7,8 1 22 PSU3(32) 6 5 6,7 1 4 · A4, 42 · A3

2 23 2 4 · S4, 42 · S3

PSL2(11) 10 2 10 3 A5, A5 Sp6(2) 6 5 7,8 1 25 : A6

PSL2(13) 6 3 6,7 1 13 : 3 2 25 : S6

2 13 : 6 3 7,8 1 PSU4(22) : 2

Natural-characteristic case: Here we have that x = 1 and G has a unique conjugacy class of subgroups of
index qe/2 +1. We also have that G acts 2-transitively of degree qe/2 +1 and we have one of the following:

S d e q S d e q

PSL2(q
3) 8 6 – Sz(q) 4 4 2f

PSU3(q
2) 7 6 3 2G2(q) 7 6 3f , f > 1

8 6 6= 3

4. The Hermitian Case

For most of our geometric applications, we are interested in when a linear group G of GLd(q) acts
transitively on an object which has size of the form qe/2 + 1 where e is an even integer. As mentioned
in the introduction, we deal with unitary groups separately as the object size we are interested in here is
not of the form qe/2 + 1 where e is an even integer. In the case that G is a subgroup of GUd(q

2) and d
is even, we are interested in objects of size qd−1 + 1. If d is odd, this size is then qd + 1. Note that our
group G is defined over a field of order p2f , and we have that Φ∗

2ef (p) divides |G|, where e is d or d − 1
according to whether d is odd or even respectively. Hence we can apply Theorem 3.1.

Theorem 4.1 (Odd dimension).
Let p be a prime, let q = pf , and let d be an odd integer greater than 1. If a subgroup G of GUd(q

2) has
order divisible by Φ∗

2df(p), and (p, df) 6= (2, 3), then we have one of the following:

(a) SUd(q
2) P G.

(b) d = 3, q = 5, and A7 6 G 6 S7.
(c) G 6 ΓU1(q

2d).

Proof. Most cases drop out of Theorem 3.1 because of the restriction that d is odd, d = e, and our group
G is defined over a field of square order. For the Classical examples we have only two cases to deal with.
The first is when SLd(q

2) P G. This implies that |SLd(q
2)| divides |GUd(q

2)| and so

((q2)3 − 1)((q2)5 − 1) · · · ((q2)d − 1)

divides

((q2)3 + 1)((q2)5 + 1) · · · ((q2)d + 1).

This is impossible for all d > 3, and therefore this case does not arise. The second is when d is odd and
SUd(q

2) P G. This case does arise.
There is one example in the Nearly Simple case to consider. It appears in the Alternating Group case,

where n = 7, d = e = 3, q2 = 25, and A7 6 G 6 S7. The only other case remaining is the Extension field
case, which gives us the third of the possibilities listed above. �
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Theorem 4.2 (Even dimension).
Let p be a prime, let q = pf , and let d be an even integer greater than 2. If a subgroup G of GUd(q

2) has
order divisible by Φ∗

2(d−1)f(p), and (p, (d − 1)f) 6= (2, 3), then we have one of the following:

(a) Here we have d = 4 and one of the following
(i) G′ = 4 · PSL3(4), q = 3, and PSL3(4) 6 G 6 Aut(PSL3(4));
(ii) PSL2(7) 6 G and q = 3;
(iii) PSL2(7) 6 G and q = 5.

(b) G fixes a subspace or quotient space U of Vd(q
2) of dimension d−1. So G 6 q2(d−1) ·(GUd−1(q

2)×
GU1(q

2)) and Φ∗
2(d−1)f (p) divides |GU |. Moreover, one of the following occurs:

(i) SUd−1(q
2) P GU .

(ii) d = 4, q = 5, and A7 6 GU 6 S7 (note that GU 6 GU3(25)).
(iii) GU 6 ΓU1(q

2(d−1)).

Proof. Most cases drop out of Theorem 3.1 because of the restriction that d is even, d = e + 1 (in many
of the cases, e+1 is prime and so d = 2; a contradiction), and our linear group G is defined over a square
field q2. By [19, pp. 165] the Classical examples cannot arise.

There are three examples in the Nearly Simple case to consider. They appear in the Cross-characteristic
case:

(i) G′ = 4 · PSL3(4), d = 4, and q2 = 9 (we refer to [13] for the extra information present here);
(ii) PSL2(7) 6 G, d = 4, q2 = 9;
(iii) PSL2(7) 6 G, d = 4, q2 = 25.

All that is left are the Reducible examples. Note that GU 6 GUd−1(q
2) and GU is irreducible.

Therefore, the remainder follows from Theorem 4.1. �

5. The Non-Hermitian case

Before we analyse symplectic and orthogonal groups which have a subgroup of index dividing qe/2 +1,
we first present a lemma which deals with the two-dimensional semilinear groups, which we will use in
the proofs of later results.

Lemma 5.1. Let d be an even integer greater than 2, and suppose G 6 ΓL2(q
d/2) and that G is not a one-

dimensional semilinear group. If Φ∗
d(q) divides |G|, then G contains SL2(q

d/2), or G ∩PGL2(q
d/2) ∼= A5

and (q, d) ∈ {(2, 4), (2, 6), (3, 4)}.

Proof. Let G∗ be the image of G ∩ GL2(q
d/2) in PGL2(q

2) and let Z be the subgroup of scalar matrices
in GL2(q

d/2). Note that

|G| = |G∗||G ∩ Z||G · GL2(q
d/2) : GL2(q

d/2)|.
Since Φ∗

d(q) is coprime to q − 1, it is also coprime to |G ∩ Z|. Also, since Φ∗
d(q) is coprime to f (by

Fermat’s Little Theorem), we have that Φ∗
d(q) is coprime to |G · GL2(q

d/2) : GL2(q
d/2)|. Hence Φ∗

d(q)
divides |G∗|. Now we can derive candidates for G∗ by using the list of subgroups of PGL2(p

m) given in
[27]:

Subgroup order

Elementary abelian pf , f 6 m
Cyclic group n, where n divides pm ± 1

Dihedral group 2n, where n divides pm ± 1

(Elem. abelian) ⋊ (Cyclic group) pf · n, where f 6 m, and n divides pf − 1 and pm − 1
A4 12
S4 24
A5 60

PSL2(p
f ), with f |m pf (pf − 1)/2

PGL2(p
f ), with f |m (pf − 1, 2)pf (pf − 1)/2

Since the primitive part of qd − 1 divides |G∗|, and G∗ is not one-dimensional semilinear (contained in
D2n where n = qd/2 + 1), we are left with the following candidates for G∗:

G∗ order
A5 60

PSL2(q
d/2) qd/2(qd/2 − 1)/2

PGL2(q
d/2) (qd/2 − 1, 2)qd/2(qd/2 − 1)/2
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Now suppose Φ∗
d(q) divides 60. If r is primitive prime divisor of qd − 1, then r is 2, 3, or 5, and r is

congruent to 1 modulo d. Hence r = 5, and in fact Φ∗
d(q) = 5 as no power of 5 divides 60. Since d > 4,

we have that Φ∗
d(q) < 2d + 1 and therefore Φ∗

d(q) = 1 or Φ∗
d(q) = d + 1. It follows from a result of Hering

(see [15, Theorem 3.9] or Lemma 6.1) that Φ∗
d(q) divides 60 only when (q, d) ∈ {(2, 4), (2, 6), (3, 4)}. �

Before we begin to apply Theorem 3.2 to classical groups, we make the following observation which
makes our approach valid. Let r be a primitive prime divisor of pef −1 with r dividing f . Then ef = mr
for some positive integer m, and so r divides (pm)r − 1. By Fermat’s Little Theorem, this implies that r
divides pm−1, which contradicts the fact that r is a primitive prime divisor. So Φ∗

e(q) is coprime to f . In
this section, each of our results have the hypothesis that a group G has a subgroup of index (qe/2 +1)/x,
where x is a divisor of f . Since x is coprime to Φ∗

e(q), we can apply Theorem 3.2.

Corollary 5.2 (Symplectic case).
Let p be prime, let q = pf , and let d be an even positive integer greater than 2. If a subgroup G of GSpd(q)
has a subgroup H of index (qd/2 + 1)/x, where x is a divisor of f , and (q, d) 6= (2, 6), then one of the
following occurs:

Classical examples: We have that d = 4, q is even, and Ω−
4 (q) P G.

Extension field examples: We have either

(a) SL2(q
d/2) 6 G 6 ΓL#

2 (qd/2).
(b) G = A5, d = 4, and q ∈ {2, 3}.
(c) q is even, G 6 ΓSpd/b(q

b), where b is a divisor of d, b 6= 1, and one of the following holds:

(i) d/b = 4, x = 1, and Sz(qd/4) 6 G ∩ GSp4(q
d/4) 6 Aut(Sz(qd/4));

(ii) d/b = 4 and Ω−
4 (qd/4) P G ∩ GSp4(q

d/4);
(d) q is odd, q 6= 5, d = 6, G 6 ΓU3(q

2), and SU3(q
2) P G ∩ GU3(q

2).

Symplectic type examples:

Here q = 3, d = 4, G is a cyclic subgroup of (21+4
− ·O−

4 (2))◦2 of order 10 and H is its trivial subgroup.

Nearly simple case: We have that there is a nonabelian simple group S such that S 6 G 6 Aut(S).
In each case below, we have that x = 1.

Alternating group case: Here S = A5, q = 2, d = 4, and the vector space V4(2) can be identified with the
fully deleted permutation module for S5 over GF(2). Moreover, G has the natural transitive action on
five points.

Cross-characteristic case: We have that q = p and the table below lists the possibilities for this case. The
number of times an isomorphism type of a group appears in a row for the S ∩ H column is equal to the
number of conjugacy classes of that isomorphism type for S ∩ H in S.

S d q S ∩ H

PSU3(3
2) 6 5 4 · A4, 42 · A3

PSL2(7) 6 3 S3

PSL2(13) 6 3 13 : 3
PSL2(25) 12 2 S5, S5

Natural-characteristic case: Here S = Sz(q), d = 4, p = 2, and G has a unique conjugacy class of subgroups
of index q2 + 1.

Proof. We apply Theorem 3.2 in the case that G preserves an alternating form on Vd(q). In many cases,
it turns out that x = 1, and so a lot of cases drop out. First note that as d = e, we can rule out the
Reducible Examples and the Imprimitive Examples. For the Symplectic Type case, we have d = 4, p = 3,
G is cyclic of order 10, and H is trivial (we used [12] to obtain most of this information).

Since d is even, we have in the Classical Examples case that d = 4 and G contains Ω−
4 (q). By

[19, pp. 165], q is even. Suppose now we are in the Extension field examples case. So we have that
G 6 ΓLd/b(q

b) where b is a divisor of d (b 6= 1), and G preserves an alternating form on Vd/b(q
b), or

b = 2 and G preserves a unitary form on Vd/2(q
2). We may assume that b is maximal in that G does not

preserve a larger extension field structure. Suppose G preserves an alternating form on Vd/b(q
b) and let

GSp = G ∩ GSpd/b(q
b).

Suppose d/b > 4. So we can apply Theorem 3.2 to GSp where e/b, d/b, and qb play the roles of e, d,
and q respectively. Now since qb is not prime and d/b = e/b, we have only the following two possibilities:
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(i) Ω−
d/b(q

b) P GSp and d/b = 4;

(ii) G
(∞)
Sp = Sz(qb) and d/b = 4.

In the second case above, we have that |GSp : H ∩ GSp| is at least the minimum degree (qd/4)2 + 1 of

Sz(qd/4) (see [26]) and so

x =
qd/2 + 1

|G : H | 6
(qd/4)2 + 1

|GSp : H ∩ GSp|
6 1.

Now suppose G preserves a unitary form on Vd/2(q
2) and let GU = G∩GUd/2(q

2). First suppose that

d/2 is even. Then by Theorem 3.2, q is odd and GU has a subgroup of order dividing qd/2 + 1. Since
d > 6, we can apply Theorem 3.2 again where e/2, d/2, and q2 play the roles of e, d, and q respectively.
Now since q2 is not prime, d/2 = e/2, q is odd, and GU is not of Extension Field type (we chose the
extension to be maximal), we find that this case does not arise. So suppose that d/2 is odd. Then it
follows from Theorem 4.1 that q 6= 2, 5, d = e = 6, and SU3(q

2) P GU . The case d/b = 2 follows from
Lemma 5.1.

Now consider the Nearly simple examples, and suppose firstly that we are in the Alternating group
case. Consider the action of An on its fully deleted permutation module M (over a field of order q), and
suppose ⊥ is a polarity on M . Since An is absolutely irreducible on M , we have that the centraliser
of An consists only of scalar matrices (see [19, Lemma 2.10.1]). Therefore, it follows that ⊥ is a scalar
multiple of the natural polarity induced by the dot product on Vd(q), which is of orthogonal type. So q is
even and hence q = 2, n = 5, x = 1, and d = 4. In the Cross-characteristic case, by inspecting the table
in Theorem 3.2, we check that x divides f and d = e. From this inspection, we find that x = 1 and we
arrive at the following possibilities:

S d q S ∩ H

PSU3(32) 6 5 4 · A4, 42 · A3

PSL2(7) 6 3 S3

PSL2(13) 6 3 13 : 3
PSL2(25) 12 2 S5, S5

Finally, in the Natural-characteristic case, the only case that arises is when S = Sz(q), d = 4, and
p = 2 (since d = e). �

Corollary 5.3 (Orthogonal (elliptic) case).
Let p be prime, let q = pf , and let d be an even positive integer greater than 2. If a subgroup G of GO−

d (q)

has a subgroup H of index (qd/2 + 1)/x, where x is a divisor of f , and (q, d) 6= (2, 6), then one of the
following occurs:

Classical examples: We have d = 4 and Ω−
4 (q) 6 G.

Extension field examples: Here we have that G 6 ΓO−
d/b(q

b) where b is a non-trivial divisor of d.

We have one of the following:

(a) SL2(q
d/2) 6 G 6 ΓL#

2 (qd/2);
(b) G = A5, d = 4, and q ∈ {2, 3};
(c) q is even, d/b = 4, G 6 ΓO−

4 (qd/4), and Ω−
4 (qd/4) P G ∩ GO−

4 (qd/4);
(d) q is odd, q 6= 5, d = 6, G 6 ΓU3(q

2), and SU3(q
2) P G ∩ GU3(q

2).

Nearly simple case: We have that there is a nonabelian simple group S such that S 6 G 6 Aut(S).
In each case below, we have that x = 1.

Alternating group case: We have q = p = 3, d = 6, G = S7 × 2, and H ∼= A6. There are two conjugacy
classes of subgroups of G isomorphic to A6.

Cross-characteristic case: Here we have S = PSL2(7), d = 6, q = 3, and (G, H) ∈ {(PGL2(7), A4),
(PGL2(7), D12), (PSL2(7), S3)}.
Proof. As in Corollary 5.2, we apply Theorem 3.2. First note that as d = e, we can rule out the Reducible
examples and the Imprimitive examples. By [19, pp. 150], the Symplectic type case does not arise.

In the Classical examples case, since d is even, we have that d = 4 and Ω−
4 (q) P G. Suppose now we

are in the Extension field examples case. So we have that G 6 ΓO−
d/b(q

b) where b is a non-trivial divisor

of d. By Theorem 3.2, we see that G must either preserve a form on Vd/b(q
b) of the same type as that

on Vd(q), or b = 2 and G preserves a unitary form on Vd/2(q
2). Let us assume the former case. We may
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assume that b is maximal in that G∩GO−
d/b(q

b) does not preserve a larger extension field structure. Let

GO− = G ∩ GO−
d/b(q

b).

Suppose d/b > 4. Then we can apply Theorem 3.2 to GO− where e/b, d/b, and qb play the roles of e, d,
and q respectively. Now since qb is not prime and d/b = e/b, we have only the following two possibilities:

(i) Ω−
d/b(q

b) P GO− and d/b = 4;

(ii) G
(∞)
O− = Sz(qb) and d/b = 4.

However, by [17], Sz(qb) does not have a 4-dimensional orthogonal representation in characteristic 2.
Hence the second case above does not arise.

Now suppose G preserves a unitary form on Vd/2(q
2) and let GU = G∩GUd/2(q

2). First suppose that

d/2 is even. Then by Theorem 3.2, q is odd and GU has a subgroup of order dividing qd/2 + 1. Since
d > 6, we can apply Theorem 3.2 again where e/2, d/2, and q2 play the roles of e, d, and q respectively.
Now since q2 is not prime, d/2 = e/2, q is odd, and GU is not of Extension field type, we find that this
case does not arise. For d/2 odd, it follows from Theorem 4.1 that q 6= 2, 5, d = e = 6, and SU3(q

2) P GU .
The case d/b = 2 follows from Lemma 5.1.

Now suppose G is in the Nearly simple case. In the Alternating group case, we do some discriminant
calculations as follows: Let V be a vector space of dimension n over a field of order q and let M be the
fully deleted permutation module of V of dimension d. Let f be a non-degenerate bilinear form on V
(one can take the usual dot product on V ) and let fM be the induced bilinear form on M . For some of
the values of n, d, and q given by Theorem 3.2, we can find the possibilities for the signs of f and fM .

q d n Sign of f Sign of fM

2 4 5 ◦ +
3 4 5 ◦ +

6 − +
3 6 7 ◦ −
5 6 7 ◦ +

8 9 ◦ +
10 + +

So we see that qe = 36 in this case. Note that x = 1 as q = p. Now we turn to the case that
qe ∈ {210, 212, 218} and n = e + 1. First note that again we have x = 1 as q = p. In the case that
qe = 210, the only maximal subgroups of A11 and S11 which have index dividing (qe/2 + 1)/x = 33 are
A10 and S10 respectively. Since these groups do not have an index 3 subgroup, this case does not arise.
A similar argument shows that the cases qe = 212 and qe = 218 do not arise.

In the Cross-characteristic case, by inspecting the table in Theorem 3.2, we arrive at the following
possibilities:

S d q S ∩ H

PSU3(32) 6 5 4 · A4, 42 · A3

PSL2(7) 6 3 S3

PSL2(13) 6 3 13 : 3
PSL2(25) 12 2 S5, S5

By [17], PSL2(13) and PSL2(25) do not have orthogonal representations of degrees 6 and 12 re-
spectively, of characteristic given in the table above. It is clear from the tables in Kleidman’s thesis
[23], that PSU3(3

2) is not a subgroup of PSU4(5
2), and hence not a subgroup of ΓO−

6 (5) (recall that
PΩ−

6 (5) ∼= PSU4(5
2)). So we are left with the case that S = PSL2(7). Indeed, PSL2(7) is a subgroup of

PSL3(4), which is in turn a maximal subgroup of PSU4(3
2). Therefore, this case arises.

Finally, since d = e, we have in the Natural-Characteristic case that G(∞) = Sz(q), d = 4, and p = 2.
However, by [17], Sz(q) does not have a 4-dimensional orthogonal representation in characteristic 2. Hence
this case does not arise. �

Corollary 5.4 (Orthogonal (parabolic) case).
Let p be prime, let q = pf , and let d be an odd positive integer greater than 1. If a subgroup G of GOd(q)
has a subgroup H of index (q(d−1)/2 + 1)/x, where x is a divisor of f , then one of the following occurs:

Reducible examples: We have that G fixes a subspace or quotient space U of Vd(q) and dim(U) = d−1.
So G 6 qd−1) · (GO−

d−1(q) × GO1(q)), where Φ∗
d−1(q) divides |GU |, and GU has a subgroup of index

(q(d−1)/2 + 1)/y, with Φ∗
d−1(q) coprime to y. The group GU satisfies the hypotheses of Corollary 5.3.
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Imprimitive examples: Here G preserves a direct sum decomposition V = U1

⊕ · · ·⊕Ud where each
Ui has dimension 1. Moreover, G is a subgroup of GL1(q)≀Sd in product action, and G induces a primitive
group on the factors {U1, . . . , Ud}. Finally, either qd = 35, 37 or q = 2, d = 5, x = 1.

Extension field examples: In this case, q = p ∈ {2, 3}, d = 5, and G 6 ΓL#
1 (q5). Furthermore, if

q = 2, then x = 1, and if q = 3, we have x = 1, 2.

Nearly simple case: We have in this case, S 6 G 6 Aut(S) where S is a finite nonabelian simple
group.

Cross-characteristic case: The table below lists the possibilities for this case. The number of times an
isomorphism type of a group appears in a row for the S ∩ H column is equal to the number of conjugacy
classes of that isomorphism type for S ∩ H in S. We have that d = 7 and x = 1 in each case.

S q S ∩ H S q S ∩ H

PSL2(7),PSL3(2) 3 S3 PSU3(3
2) 5 4 · A4, 42 · A3

PSL2(8) 3 9 : 2 Sp6(2) 3 PSU4(2
2) : 2

5 22 5 25 : A6

PSL2(13) 3 13 : 3

Natural-characteristic case: Here we have that x = 1, d = 7, p = 3, and G has a unique conjugacy class
of subgroups of index q3 + 1. We also have that G acts 2-transitively of degree q3 + 1 and we have either
S = PSU3(q

2) or S = 2G2(q) (and q 6= 3).

Proof. We apply Theorem 3.2. First note that as d = e+1, we can rule out the Symplectic type examples
and the second part of the Extension field examples (note that gcd(d, e) = 1 in these cases). The Classical
examples case does not arise by [19, pp. 165]. The Imprimitive examples case is largely unchanged from
Theorem 3.2 except that we impose the restriction that d = e+1, and the case (q, d) = (5, 7) is missing for
the following argument. Let π be the natural projection map from GL1(5) ≀ S7 to S7. Since q3 + 1 = 126
and kerπ is even, we have that |π(G) : π(H)| ∈ {63, 126}. It follows that π(G) ∈ {A7, S7} by elementary
knowledge of the subgroups of S7. However, A7 and S7 do not have subgroups of index 63 or 126; which
is a contradiction. Hence (q, d) 6= (5, 7).

In the Reducible examples case, we have from [19, pp. 83] that G 6 qd−1) · (GOǫ
d−1(q) × GO1(q))

where ǫ = ±. Now since Φ∗
d−1(q) divides |GU |, and Φ∗

d−1(q) is coprime to the order of GO+
d−1(q), we have

that ǫ = −.
Now suppose G is in the Nearly simple case. In the Cross-characteristic examples subcase, we have

from [17], that PSL2(25) does not have a 12-dimensional orthogonal representation in characteristic 2,
and we are left with the following:

S q d x S ∩ H S q d x S ∩ H
PSL2(7),PSL3(2) 3 7 1 S3 PSL2(25) 2 13 1 S5, S5

PSL2(8) 3 7 1 9 : 2 PSU3(3
2) 5 7 1 4 · A4, 42 · A3

5 7 1 22 Sp6(2) 5 7 1 25 : A6

PSL2(13) 3 7 1 13 : 3 3 7 1 PSU4(2
2) : 2

For the Natural-characteristic case, we have d = 7, p = 3, and S ∈ {PSU3(q
2), 2G2(q)}. �

Corollary 5.5 (Orthogonal (hyperbolic) case).
Let p be prime, let q = pf , and let d be an even positive integer greater than 2. If a subgroup G of GO+

d (q)

has a subgroup H of index (qd/2−1 + 1)/x, where x is a divisor of f , and (q, d) 6= (2, 6), then one of the
following occurs:

Reducible examples: We have that G fixes a subspace or quotient space U of Vd(q) of dimension m
with m ∈ {d − 1, d − 2}. So G 6 qm(d−m) · (GLm(q) × GLd−m(q)), Φ∗

d−2(q) divides |GU |, and GU has a

subgroup of index (qd/2−1 + 1)/y, with Φ∗
d−2(q) coprime to y. There are two subcases:

(i) dim(U) = d − 1 and GU 6 GOd−1(q); or
(ii) dim(U) = d − 2 and GU 6 GO−

d−2(q).

Extension field examples:

Here we have that d = 14, p = 3, G 6 ΓO7(q
2), and PSU3(q

4) 6 G ∩ GO7(q
2).

Symplectic type examples:

Here q = p ∈ {3, 5}, d = 8, and G 6 (21+6
+ · O+

6 (2)) ◦ Z where Z is the subgroup of scalar matrices of
GL8(q).
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Nearly simple case: We have that there is a nonabelian simple group S such that S 6 G 6 Aut(S).
In each case below, we have x = 1 and d = 8.

Alternating group case:

In this case q = p, S = An, and G has a unique conjugacy class of subgroups of index q3 +1. We have
one of the following:

n p Description of subgroup of index q3 + 1
10 5 Stabiliser of action on 5-subsets of a 10 element set

9 5 Stabiliser of action on 5-subsets of a 10 element set

8 3 Stabiliser of action on unordered pairs

7 5 Stabiliser of action on Sylow 5-subgroups

Cross-characteristic case: Firstly, we have that q = p. The table below lists the possibilities for this case.
The number of times an isomorphism type of a group appears in a row for the S ∩ H column is equal to
the number of conjugacy classes of that isomorphism type for S ∩ H in S.

S q S ∩ H

PSL3(4) 5 24 : D10, 24 : D10

PSL2(8) 5 22

Sp6(2) 3 PSU4(22) : 2
5 25 : A6

Natural-characteristic case: Here we have that G has a unique conjugacy class of subgroups of index q3 +1.
Either S = PSL2(q

3) and q is even, or S = PSU3(q
2) and p 6= 3.

Proof. We apply Theorem 3.2. First note that as d = e + 2, we can rule out the one-dimensional
Extension field examples. For the Symplectic type case, we have by [19, pp. 150], that d = 8, p ∈ {3, 5},
and G 6 (21+6

+ · O+
6 (2)) ◦ Z. The Classical examples case does not arise by [19, pp. 165].

Suppose now that we have the Reducible examples case. So G fixes a subspace or quotient space U of
Vd(q), of dimension m, where m ∈ {d − 1, d − 2}. There are two subcases:

(i) m = d − 1 and GU 6 GOd−1(q);
(ii) m = d − 2 and either GU 6 GO+

d−2(q) or GU 6 GO−
d−2(q).

Suppose we have the second case above where GU 6 GO+
d−2(q). Since Φ∗

d−2(q) divides |GU |, we must

have that Φ∗
d−2(q) divides |GO+

d−2(q)|. Now the largest qi−1 term of |GO+
d−2(q)| is qd/2−1−1, and hence

we have a contradiction. Therefore, we have only GU 6 GO−
d−2(q) in the situation where m = d − 2.

In the Imprimitive Examples case, we have from [19, pp. 100] that qd/2 is odd and hence q = 3 and
d = 6. Moreover, we have that G 6 GOd/2(q)

2. Now the primitive groups of degree 6 are PSL2(5),

PGL2(5), A6, and S6. Each of these does not have size dividing GO3(3)2 = 482. Hence this case does
not arise.

Suppose now we are in the Extension field case. So we have three subcases:

(i) d/2 is even and G 6 ΓO+
d/2(q

2) (note that gcd(d, d − 2) = 2 and so b = 2),

(ii) d/2 is odd and G 6 ΓO◦
d/2(q

2), or

(iii) d/2 is even and G 6 ΓUd/2(q
2).

(i) Let us assume the first case. Note that Φ∗
d−2(q) divides |G ∩ GO+

d/2(q
2)|, however, the largest qi − 1

factor of |GO+
d/2(q

2)| has i < d − 2; a contradiction.

(ii) Now suppose we are in the second case; that is, G 6 ΓOd/2(q
2), and d/2 is odd. Let GO =

G ∩ GOd/2(q
2). Since d/2 > 3, we can apply Corollary 5.4 to GO where d/2 − 1, d/2, and q2 play the

roles of e, d, and q respectively. Now since q2 is not prime, and we can assume that GO is irreducible,
we have that d/2 = 7, p = 3, and S 6 GO 6 Aut(S) where S = PSU3(q

4).

(iii) Finally, suppose we have the third case; that is, G 6 ΓUd/2(q
2), and d/2 is even. Let GU =

G ∩ GUd/2(q
2). If d/2 > 4, then we can apply Theorem 3.2 to GU where d/2 − 1, d/2, and q2 play the

roles of e, d, and q respectively. Now since q2 is not prime, we have one of the following:

(a) d = 8, Ω−
4 (q2) P GU ;

(b) S P GU 6 Aut(S) where (d, q, S) is (8, 9, PSL2(7)), (8, 25, PSL2(7)), or (20, 4, PSL2(19)).

The first case does not arise by [19, pp. 165]. We can also check the representations of the groups S in
case (b). It turns out that PSL2(7) does not have the required unitary representation (see [17]), so we are
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now left with the case that S = PSL2(19). Now in this case, qd/2−1 + 1 = 262145 but |Aut(S)| = 6840.
Clearly this case is impossible.

If d = 4, so that G 6 ΓL#
2 (qd/2), we apply Lemma 5.1. If A5 6 G and q ∈ {2, 3}, then this implies

that 60 divides GO+
4 (q) – which is impossible. Again, by inspecting orders, the case SL2(q

2) 6 G does
not arise as SL2(q

2) is not a subgroup of GO+
4 (q). Therefore d > 4.

Now suppose G is in the Nearly simple case. In the Alternating group case: Permutation module
examples, note that in many of the cases, we do not have e = d − 2. We are left with the following
possibilities:

(i) qe = 56, d = 8, n = 9, and G has a unique transitive action on 126 points where H is the stabiliser
in the action on 5-subsets;

(ii) qe = 56, d = 8, n = 10, and G has a unique transitive action on 126 points where H is the
stabiliser of a partition of a set of size 10 into 2 sets of size 5;

For Alternating group case: Other examples, we have d = 8, q = p, S = An, and G has a unique
conjugacy class of subgroups of index q3 + 1. So we have one of the following:

n p Description of subgroup of index q3 + 1
10 5 Stabiliser of action on 5-subsets of a 10 element set
9 5 Stabiliser of action on 5-subsets of a 10 element set
8 3 Stabiliser of action on unordered pairs
7 5 Stabiliser of action on Sylow 5-subgroups

By [17], A9 and A10 both have a unique 8-dimensional absolutely irreducible orthogonal representation
over GF(5). In the Cross-characteristic case, by inspecting the table in Theorem 3.2, we have that d = 8
and one of the following possibilities:

S q S ∩ H S q S ∩ H

PSL2(7) 3 S3 PSL3(4) 5 24 : D10, 24 : D10

PSL2(8) 3 9 : 2 Sp6(2) 3 PSU4(22) : 2
5 22 5 25 : A6

By [17], PSL2(7) and PSL2(8) do not have absolutely irreducible 8-dimensional representations in
characteristic 3. Finally, since d = e+2, we have in the Natural-Characteristic case that d = 8 and either
S = PSL2(q

3) or S = PSU3(q
2). If S = PSL2(q

3), then by [20], q is even. �

6. Proof of Theorem 3.1

Before we begin proving the first main theorem of this paper, we recast a simple number theoretic
result which appears in Hering’s 1974 paper [15] which lists the possible values of q and e when Φ∗

e(q) is
small. By definition, the number Φ∗

e(q) is congruent to 1 modulo e. So if this quantity is nontrivial, the
smallest values it can take are e+1 and 2e+1. In these cases, we have specific information on the values
of q and e.

Lemma 6.1. Let q be a power of a prime p and e > 3 an integer.

(i) If Φ∗
e(q) = e + 1 then qe = pe = 24, 210, 212, 218, 34, 36, 56.

(ii) If Φ∗
e(q) = 2e + 1 then either qe = pe = 23, 28, 220, or qe = p2e = 43, 46, 92.

(iii) If Φ∗
e(q) = (e + 1)2 then qe = pe = 74.

(iv) If Φ∗
e(q) = (e + 1)(2e + 1) then qe = pe = 318, 176.

Note that if q = pf , then Φ∗
ef (p) divides Φ∗

e(q). In our applications, it will be necessary to investigate

the values of this possibly smaller number Φ∗
ef (p). Hence, we will often refer to the following simple

observation.

Lemma 6.2. If Φ∗
ef (p) = e + 1 and e > 1, then f = 1.

Proof. First note that Φ∗
ef (p) ≡ 1 (mod ef) as by definition, ef is the order of p modulo Φ∗

ef (p). Since

Φ∗
ef (p) > 1, we have Φ∗

ef (p) > ef + 1 and hence e + 1 > ef + 1. So it follows that f = 1. �

Now we will prove Theorem 3.1. We have that q = pf where p is a prime, d and e are integers greater
than 2 satisfying d/2 < e 6 d, and G is a subgroup of GLd(q) with order divisible by Φ∗

ef (p) (which is

nontrivial). By the latter condition, there exists a primitive prime divisor r of pef − 1 that divides |G|.
Since Φ∗

ef (p) divides Φ∗
e(q), we have that r is a primitive prime divisor of qe − 1. So we can apply the

result of Guralnick, Praeger, Penttila, Saxl (see [13, Main Theorem]).
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Classical examples: By [13, Main Theorem], we have G 6 GLd(q0) ◦ Z, where q = qb
0 and Z is the

group of non-singular scalar matrices in GLd(q). So Φ∗
ef (p) divides

|GLd(q0) ◦ Z| = p
df(d−1)

2b (pf − 1)
[

(p2f/b − 1)(p3f/b − 1) · · · (pdf/b − 1)
]

.

Now Φ∗
ef (p) is coprime to pi − 1 for 1 6 i < ef , and hence Φ∗

ef (p) divides
[

(pef/b − 1)(pef/b+1 − 1) · · · (pdf/b − 1)
]

.

Therefore d/b > e (as Φ∗
ef (p) > 1). Now d/2 < e 6 d and hence if b 6= 1, we have d/b 6 d/2 < e, which

is a contradiction. Therefore b = 1, q = q0, and the rest follows from [13, Main Theorem].

Reducible examples: By [13, Main Theorem], we have that G fixes a subspace or quotient space U of
Vd(q) and dim(U) = m > e. So G 6 qm(d−m) · (GLm(q) × GLd−m(q)). Since m > d/2, the point-wise
stabiliser G(U) can be identified with a subgroup of GLd−m(q). Now |G| = |GU ||G(U)| and |G(U)| divides

q(d−m)(d−m−1)/2(q − 1)(q2 − 1) · · · (qd−m − 1). Since Φ∗
ef (p) divides |G|, it follows that Φ∗

ef (p) divides

|GU | as Φ∗
ef (p) is coprime to qi − 1 = pfi − 1 for 0 < i < e and d − m < e.

Imprimitive examples: By [13, Main Theorem], we have r = e + 1 6 d, and by [13, Lemma 4.1], every
primitive prime divisor of qe − 1 is equal to e + 1. Therefore every primitive prime divisor of pef − 1 is
equal to e + 1, and so Φ∗

ef (p) is a power of e + 1. Now G is a subgroup of GL1(q) ≀ Sd and hence Φ∗
ef (p)

divides |GL1(q) ≀ Sd| = (q − 1)dd!. Since Φ∗
ef (p) is coprime to q − 1, it follows that Φ∗

ef (p) divides d!. If

r2 divides d!, then r 6 d/2, which contradicts the fact that r = e + 1 > d/2. So Φ∗
ef (p) = r = e + 1. By

Lemma 6.2, we have that f = 1 and hence q = p. We have from Lemma 6.1 the following possibilities
for q, e, and d:

q e d q e d
2 4 5, 6, 7 3 4 5, 6, 7
2 10 11, . . . , 19 3 6 7, . . . , 11
2 12 13, . . . , 23 5 6 7, . . . , 11
2 18 19, . . . , 35

Extension field examples:

(a) Here we have r = d = e + 1. By the proof of [13, Lemma 4.2], Φ∗
ef (p) is a power of r. Now G is a

subgroup of GL1(q
d)·d and hence Φ∗

ef (p) divides (qd−1)d. Since Φ∗
ef (p) is coprime to p(e+1)f −1 = qd−1,

it follows that Φ∗
ef (p) divides d and hence Φ∗

ef (p) = r = e + 1. So by Lemma 6.2 and Hering’s Theorem,

we have qe = pe = 24, 210, 212, 218, 34, 36, 56.

(b) As given in the statement of the Theorem, we have that G 6 GLd/b(q
b) · b where b is divisor of

gcd(d, e) and b 6= 1. Suppose G preserves a non-degenerate sesquilinear form f on Vd(q). By [19, Table
4.3A], G preserves a form f ′ on Vd/b(q

b) of a type related to f as follows:

type of f type of f ′ conditions
null null

unitary unitary
symplectic symplectic
symplectic unitary q odd
orthogonal orthogonal d/b > 3, same sign
orthogonal orthogonal b = 2, dq/2 odd

orthogonal unitary b = 2, sign is (−)d/2

Now the largest qi − 1 term of |GOd/2(q)| is qd/2−1 − 1, and so since Φ∗
ef (p) is coprime to qi − 1 for

1 6 i < e, it follows that d − 2 > e. The remaining cases are precisely when f ′ is unitary or f ′ is the
same type as f .

We show now that Φ∗
ef (p) divides |G ∩ GLd/b(q

b)|. Let r′ be any primitive prime divisor of qe − 1

which divides |G|. By the proof of [13, Lemma 4.2], if r′ divides b, then r′ = b = d = e + 1 and we are
in case (a) above. So we can assume that every primitive prime divisor of qe − 1 that divides |G| is not
a divisor of b. So in particular, every primitive prime divisor of pef − 1 that divides |G| is not a divisor
of b, and hence Φ∗

ef (p) is coprime to b. Therefore Φ∗
ef (p) divides |G ∩ GLd/b(q

b)|.
Symplectic type examples:

Here we have two cases, but in all cases we have d = 2m, p is odd, and f is odd.

(a) In this case, r = d + 1 = e + 1 and r is a Fermat prime. By the proof of [13, Lemma 4.3], the only
primitive prime divisor of qe − 1 is r and so the only primitive prime divisor of pef − 1 is r. Therefore,
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Φ∗
ef (p) is a power of r. Now G is a subgroup of (S · M0) ◦ Z, where S is a 2-group, and M0 is given by

[13, Table 1]. It follows that Φ∗
ef (p) divides

|Sp2m(2)| = 2m2

(22 − 1)(24 − 1) · · · (22m − 1).

Since r is a primitive prime divisor of 22m − 1 (see the proof of [13, Lemma 4.3]), we have that Φ∗
ef (p) =

r = e + 1. By Lemma 6.1 and Lemma 6.2, we get qe = pe = 34 (recall that p is odd and e + 1 is a Fermat
prime). Therefore, by [13, Main Theorem], G 6 (25

− · O−
4 (2)) ◦ 2 (note that Φ∗

e(q) = 5 and 5 does not

divide |O+
4 (2)| = 72).

(b) In this case, r = d−1 = e+1 and r is a Mersenne prime (and hence m is prime). Again, by the proof
of [13, Lemma 4.3], the only primitive prime divisor of qe − 1 is r and so Φ∗

ef (p) is a power of r. Now

gcd(r, 22i − 1) = gcd(2m − 1, 22i − 1) = 2gcd(m,2i) − 1

and hence r divides 22i − 1 if and only if m divides 2i. It follows that Φ∗
ef (p) = r = e + 1. By Lemma 6.1

and Lemma 6.2, we have qe = pe = 36, 56 (note that p is odd and e+1 is a Mersenne prime). If p = 3, then
by [13, Main Theorem], G 6 (27

+ ·O+
6 (2))◦2 (note that Φ∗

e(q) = 7 and 7 does not divide |O−
6 (2)| = 51840).

If p = 5, then by [13, Main Theorem], either G 6 ((4 ◦ 27) · Sp6(2)) ◦ 4 or G 6 (27
+ · O+

6 (2)) ◦ 4.

Nearly simple case:

Alternating group case: In all subcases, S = An for n > 5, and S 6 G/(G ∩ Z) 6 Aut(S) where Z is the
group of scalar matrices in GLd(q). So |G| divides |Z||Aut(S)| and thus |Φ∗

ef (p)| divides n!.

(a) Here d is n − 1 or n − 2, and (d + 3)/2 6 r 6 n with r a primitive prime divisor of qr−1 − 1 (thus
r = e + 1). So Φ∗

ef (p) is a power of r. But if r2 divides n!, then r 6 n/2 6 (d + 2)/2. This is a

contradiction as r > (d + 3)/2. Therefore Φ∗
ef (p) = r = e + 1 and we can apply Lemma 6.1 and Lemma

6.2. So in this case qe = pe = 24, 210, 212, 218, 34, 36, 56.

(b) Here we run through Tables 2 and 3 of [13], and apply Lemma 6.1, but first a subtlety will be noted
which occurs in Table 2 of [13]. In one of the lines of the table, it has two possibilities for r; it could be
e + 1 or 2e + 1. However, it is not stated explicitly that there cannot be two distinct primitive prime
divisors of qe − 1 dividing |G|. But the table states that if r = e + 1, then r = 5, and if r = 2e + 1,
then r = 7. Since these values of r yield different values of e, we see that every primitive prime divisor of
qe − 1 dividing |G| must have the same value; either e + 1 or 2e + 1. So we can now deduce that Φ∗

ef (p)

is a power of r. By knowing that Φ∗
ef (p) divides n!, from the tables below we find that Φ∗

ef (p) is r or r2.
The case for Table 2 is shown below:

n d p (always odd) r = e + 1 r = 2e + 1 Φ∗
ef (p)

10 8 5 7 – r
9 8 p ≡ 3, 5 (mod 7) 7 – r
8 8 p ≡ 3, 5 (mod 7) 7 – r
7 4 7 5 – r2

4 p ≡ 3, 5 (mod 7) – 7 r
4 p ≡ 1, 2, 4 (mod 7) 5 7 r

6 4 p > 7, p ≡ ±2 (mod 5) 5 – r
5 4 p > 7, p ≡ ±2 (mod 5) 5 – r

6 p ≡ ±2 (mod 5) 5 – r

Table 2. The remaining possibilities arising from Table 2 of [13].

If Φ∗
ef (p) = r, then we can apply Lemma 6.1 as follows:

r = e + 1 case: If r = e + 1, then f = 1 by Lemma 6.2 and hence Φ∗
e(p) = e + 1. So pe =

24, 210, 212, 218, 34, 36, 56. By looking at Table 2, we find that this case is only valid in the first
three rows. We give a summary of the possibilities for pe in the table below:

n d r pe

10 8 7 56

9 8 7 36, 56

8 8 7 36, 56

Table 3. The remaining possibilities in the case that r = e + 1.
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r = 2e + 1 case: If r = 2e+1, then by Table 2, we have e = 3. Also 2e+1 ≡ 1 (mod ef) and hence
f = 1, 2. If f = 1, then Φ∗

e(p) = 2e+ 1 which contradicts Lemma 6.1, as e 6= 8, 20. If f = 2, then
Φ∗

2e(p) = 2e + 1, and we obtain from Lemma 6.1 that p2e = 36, 56. We give a summary of the
possibilities for this case in the table below:

n d r pe

7 4 7 33

7 4 7 53

Table 4. The remaining possibilities in the case that r = 2e + 1.

So if Φ∗
ef (p) = r, we have the five situations described in Tables 3 and 4. If Φ∗

ef (p) = r2, then we have

from Table 2 that n = 7, d = 4, p = 7, e = 4, and r = 25. So for f = 1, 2, we can directly calculate Φ∗
e(p)

and Φ∗
2e(p). These values are respectively 25 and 1201. Only the former value is valid and hence f = 1.

We now list the possibilities arising from Table 3 of [13]. Note that n = 6, 7 and so r2 does not
divide n! for the values of r given in [13, Table 3], and hence Φ∗

ef (p) = r. So we have two cases: either

f = 1 and Φ∗
e(p) = e + 1, or f = 1, 2 and Φ∗

ef (p) = 2e + 1. In both cases we can apply Lemma 6.1. If

Φ∗
ef (p) = 2e + 1, then pe = 25, 26, 29, 33, 53 (if f = 2) or pe = 28, 220 (if f = 1). In [13, Table 3], e only

takes the values 3, 4, and 6. So we have pe = 26, 33, 53. However, only one of these values correspond
to those for which r = 2e + 1, namely when pe = 53 in the first line of Table 5. If Φ∗

e(p) = e + 1, then
pe = 24, 210, 212, 218, 34, 36, 56. None of these values correspond to those for which r = e + 1. Here is a
summary of the possibilities arising from [13, Table 3].

G′ d p r = e + 1 r = 2e + 1 Possibilities
3 · A7 3 5 – 7 f = 2

6 p ≡ 1 (mod 6) 5,7 – None
6 · A7 6 p ≡ 1, 7 (mod 24) 5,7 – None
3 · A6 3 p ≡ 1, 4 (mod 15) – 5 None

3 p 6= 3,p ≡ ±2 (mod 5) – 5 None
3 · A6 6 p ≡ 1 (mod 6) 5 – None
6 · A6 6 p ≡ 1, 7 (mod 24) 5 – None

Table 5. Possibilities arising from Table 3 of [13].

So in this case, we have that G′ = 3 · A7, d = e = 3, p = 5, and f = 2.

(c) By using similar techniques to that above, we list the possibilities arising from Table 4 of [13]. Note
that n 6 8 and so Φ∗

ef (p) = r in all cases.

n d p r = e + 1 r = 2e + 1 Possibilities

8 4 2 5 7 qe = pe = 24, qe = pe = 23

7 4 2 5 7 qe = pe = 24, qe = pe = 23

8 5 7 – qe = pe = 56

Table 6. Possibilities arising from Table 4 of [13].

We will now give a demonstrative example of how these possibilities arise. Consider the third line of
[13, Table 4], where n = 7, d = 8, p = 5, and r = e + 1 = 7. Now Φef (p) = e + 1 and so by Lemma 6.2,
we have that f = 1. Hence only the case qe = pe = 56 arises (which also satisfies Lemma 6.1). In the
cases where no possibilities exist, the possible values of qe were in contradiction to Lemma 6.1.

Sporadic simple group case:
In this case, we run through Table 5 of [13]. For each case, S, Aut(S), and their orders are known (see

the Atlas [8]). Since Φ∗
ef (p) divides |G|, we check to see whether nontrivial powers of r divide |Aut(S)|,

and then surmise whether Φ∗
ef (p) = r or not. In all cases, from inspecting the order of Aut(S), it turns

out that Φ∗
ef (p) ∈ {e + 1, 2e + 1}. Thus Lemma 6.1 applies and in some cases, we have no possibilities

arising as the value of p and e do not match. Here we recast Table 5 of [13] together with the values of
p, q, and e which are possible in each case.



OVERGROUPS OF CYCLIC SYLOW SUBGROUPS OF LINEAR GROUPS 17

G′ d r = e + 1 r = 2e + 1 Possibilities G′ d r = e + 1 r = 2e + 1 Possibilities

M11 5 5 11 qe = pe = 34 M24 11 11 23 qe = pe = 210

10 11 – qe = pe = 210 23 23 – None
11 11 – None J1 20 19 – qe = pe = 218

M12 10 11 – qe = pe = 210 2 · J2 6 7 – qe = pe = 56

11 11 – None 3 · J3 9 – 19 qe = p2e = 218

2 · M12 6 5 11 qe = pe = 34 18 17, 19 – None
10 11 – None Co3 23 23 – None
12 11 – None Co2 23 23 – None

M22 10 11 – qe = pe = 210 2 · Co1 24 23 – None
2 · M22 10 11 – qe = pe = 210 Ru 28 29 – None
3 · M22 6 – 11 qe = p2e = 210 2 · Ru 28 29 – None

M23 11 11 23 qe = pe = 210 6 · Suz 12 11, 13 – None
22 23 – None

Table 7. Possibilities arising from Table 5 of [13].

Cross-characteristic case:
Here we derive the possibilities arising from Table 7 of [13]. In all cases below, r2 does not divide

|Aut(S)|, and hence Φ∗
ef (p) = r.

G′ d p r Possibilities

2 · Sz(8) 8 5 e + 1 = 7 qe = pe = 56

Sz(8) 14 p ≡ 1 (mod 4) e + 1 = 13 None
G2(3) 14 – e + 1 = 13 qe = pe = 212

2 · G2(3) 12 p > 2 e + 1 = 13 None

2 · Ω+
8 (2) 8 p > 2 e + 1 = 7 qe = pe = 36, 56

Sp6(2) 7 p > 2 e + 1 = 5, 7 qe = pe = 34, 36, 56

2 · Sp6(2) 8 p > 2 e + 1 = 7 qe = pe = 36, 56

Sp4(4) 18 p > 2 e + 1 = 17 None
2 · PSU4(2

2) ∼= Sp4(3) 4 p ≡ 1 (mod 6) e + 1 = 5 None
PSU4(2

2) ∼= PSp4(2) 5 p ≡ 1 (mod 6) e + 1 = 5 None
6 p > 5 e + 1 = 5 None

6 · PSU4(3
2) 6 p ≡ 1 (mod 6) e + 1 = 5, 7 None

4 · PSL3(4) 4 3 2e + 1 = 7 q2e = pe = 36

8 p = 5, or p ≡ 1, 9 (mod 20) e + 1 = 7 qe = pe = 56

2 · PSL3(4) 6 3 e + 1 = 5, 7 qe = pe = 34, 36

6 · PSL3(4) 6 p ≡ 1 (mod 6) e + 1 = 5, 7 None

Table 8. Possibilities arising from Table 7 of [13].

Here we investigate the possibilities arising from Table 8 of [13]. We split this case into 5 parts, but
first we make a general observation which we use in each case. We leave the proof to the reader.

Lemma 6.3. Let r be a primitive prime divisor of sn − 1, let ℓ be a positive integer, and let z be a
multiple of r such that z/r = k(s− 1)(s2 − 1) · · · (sj − 1) where k is coprime to r and j < n. If rℓ divides
z, then ℓ = 1.

(a) S = PSLn(s), n > 3, d = sn−1
s−1 − 1, sn−1

s−1 , r = e + 1 = sn−1
s−1 , n is prime.

Since n is an odd prime, Zsigmondy’s Theorem implies that there exists a primitive prime divisor r′

of sn − 1. Since r′ divides (sn − 1)/(s− 1), it follows that r = r′ as r is prime. Therefore, r is a primitive
prime divisor of sn − 1. Also, |Out(S)| = 2y gcd(n, s − 1) where s = sy

0 for some prime s0 and positive
integer y. Since n is prime, we have that |Out(S)| = 2y or |Out(S)| = 2yn. Suppose r divides |Out(S)|.
Now r is an odd prime, and so r divides |Out(S)|/2. Then sn−1

s−1 divides ny. This implies that sn−1
s−1 6 ny

and hence s
(n−1)y
0 < ny. Now it is easy to prove by induction that ny 6 2(n−1)y for all y > 1, and so

s
(n−1)y
0 < 2(n−1)y, which is a contradiction as s0 > 2. Therefore r does not divide |Out(S)| and Φ∗

ef (p)

divides |S| (as |Aut(S)| = |S||Out(S)|). Now Φ∗
ef (p) is a power of r, but by Lemma 6.3, we have that

Φ∗
ef (p) = r as |S|/r = sn(n−1)/2(s − 1)(s2 − 1) · · · (sn−1 − 1).

By Lemma 6.2 we have f = 1, and by Lemma 6.1, e ∈ {4, 6, 10, 12, 18}. Note that s sn−1−1
s−1 = e. Now

s is a proper nontrivial divisor of e, and sn−1 = e
s(s − 1) + 1. So e

s (s − 1) + 1 is the power of an integer.
We have the following calculations
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e s e
s (s − 1) + 1 e s e

s (s − 1) + 1
4 2 3 4 10
6 2 4 6 11

3 5 18 2 10
10 2 6 3 13

5 9 6 16
12 2 7 9 17

3 9

So the only possible choices for q, e, s, and n are

(q, e, s, n) ∈ {(3, 6, 2, 3), (5, 6, 2, 3), (2, 12, 3, 3)}.

(b) S = PSUn(s2), n > 3, d = sn+1
s+1 − 1, sn+1

s+1 , r = e + 1 = sn+1
s+1 , n is prime.

Since n is an odd prime, Zsigmondy’s Theorem implies that there exists a primitive prime divisor r′

of s2n − 1. So r′ = r as r′ divides (sn +1)/(s+1) = r. Therefore r is a primitive prime divisor of s2n − 1.
Also, |Out(S)| = 2y gcd(n, s+1) where s = sy

0 for some prime s0 and positive integer y. Since n is prime,
we have that |Out(S)| = 2y or |Out(S)| = 2yn. Suppose r divides |Out(S)|. Since Now r is an odd

prime, r divides |Out(S)|/2. So sn+1
s+1 divides ny and hence s2n−1

s2−1 6 ny. Thus s
2(n−1)y
0 < ny. We have

s
2(n−1)y
0 < 2(n−1)y 6 22(n−1)y, which is a contradiction as s0 > 2. Therefore r does not divide |Out(S)|

and Φ∗
ef (p) divides |S|.

Now Φ∗
ef (p) is a power of r, but by Lemma 6.3, we have that Φ∗

ef (p) = r as |S|/r divides (s2 − 1)(s4 −
1) · · · (s2n−4 − 1). (Note that we must apply Lemma 6.3 with s2 in place of s.) Hence Φ∗

ef (p) = r.

By Lemma 6.2 we have f = 1, and by Lemma 6.1, e ∈ {4, 6, 10, 12, 18}. Note that s sn−1−1
s+1 = e. Now

s is a proper nontrivial divisor of e, and sn−1 = e
s(s + 1) + 1. So e

s (s + 1) + 1 is the power of an integer.
We have the following calculations

e s e
s (s + 1) + 1 e s e

s (s + 1) + 1
4 2 7 12 4 16
6 2 10 6 15

3 9 18 2 28
10 2 16 3 25

5 13 6 22
12 2 19 9 21

3 17

Recall that p does not divide s and so (q, e, s, n) = (5, 6, 3, 3).

(c) S = PSp2n(s), d = 1
2 (sn − 1), 1

2 (sn + 1), r = e + 1 = 1
2 (sn + 1), s is odd, n = 2b > 2.

Since n > 2, Zsigmondy’s Theorem implies that there exists a primitive prime divisor r′ of s2n − 1. So
r′ divides sn + 1 and so r = 1

2 (sn + 1) divides r′. Since r′ is prime, we have that r = r′ and hence r is

a primitive prime divisor of s2n − 1. Also, |Out(S)| = 2y where s = sy
0 for some prime s0 and positive

integer y. Suppose r divides |Out(S)|. Now r is an odd prime, and so r divides y. Then 1
2 (sn +1) divides

y. This implies that sn + 1 6 2y and hence snf
0 < 2y. Now it is easy to prove by induction that w 6 2w

for all w > 1, and so sny
0 < 2y+1 6 2ny, which is a contradiction as s0 > 2. Therefore r does not divide

|Out(S)| and Φ∗
ef (p) divides |S|.

Now Φ∗
ef (p) is a power of r, but by Lemma 6.3, we have that Φ∗

ef (p) = r as |S|/r = 2sn2

(s4 − 1)(s6 −
1) · · · (s2n−2 − 1). (Note that we have applied Lemma 6.3 with s2 in place of s). By Lemma 6.2 we have
f = 1, and by Lemma 6.1, e ∈ {4, 6, 10, 12, 18}. Note that 1

2 (sn + 1) − 1 = e, and thus sn = 2e + 1.
Therefore (q, e, s, n) = (2, 12, 5, 2).

(d) S = PSp2n(3), d = 1
2 (3n − 1), 1

2 (3n + 1), r = e + 1 = 1
2 (3n − 1), n an odd prime.

By Zsigmondy’s Theorem, there exists a primitive prime divisor r′ of 32n − 1. Clearly r does not
divide |Out(S)| as |Out(S)| = 2. Therefore Φ∗

ef (p) divides |S|, and by a similar argument as that for

S = PSpn(s) above, we have Φ∗
ef (p) = r = e + 1. By Lemma 6.2 we have f = 1, and by Lemma 6.1,

e ∈ {4, 6, 10, 12, 18}. Note that 1
2 (3n + 1)− 1 = e, and thus 3n = 2e + 1, where n is an odd prime. There

are no solutions for this equation and so this case cannot occur.

(e) PSL2(s), s > 7. In this case, we have that r ∈ {s − 1, s + 1, s, 1
2 (s − 1), 1

2 (s + 1)}.
Now |L2(s)| = 1

2s(s − 1)(s + 1) and so r2 does not divide |L2(s)|. Therefore Φ∗
ef (p) = r. There are

five subcases to deal with here.

(i) d = s−1, s, s+1, r = e+1 = s−1, s = 2c, c is prime: Here e = 6 as e ∈ {4, 6, 10, 12, 18} and s = e+2
is a prime power of 2. So the only possible choices for q, e, and s are (q, e, s) ∈ {(3, 6, 8), (5, 6, 8)}.
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(ii) d = s, s + 1, r = e + 1 = s + 1, s = 2c, c = 2c′ : Here e = s > 7 and none of the possible values for e
(which are 10, 12, and 18) are powers of 2. Therefore, this case cannot occur.

(iii) d = s− 1, s, s + 1, r = e + 1 = s, s is prime: By Lemma 6.1, the possible choices for q and e = s− 1
are (q, e) ∈ {(2, 10), (2, 12), (2, 18), (3, 6), (5, 6)}.
(iv) d = 1

2 (s − 1), 1
2 (s + 1), r = 2e + 1 = s, s is prime: Since Φ∗

ef (p) = 2e + 1, we have that f = 1 or

f = 2. If f = 1, then by Lemma 6.1, we have qe = pe = 23, 28, 220. If f = 2, then by Lemma 6.1, we have
qe = p2e = 210, 212, 218, 36, 56. So the possibilities for q and e = 1

2 (s − 1) are (q, e) ∈ {(4, 5), (4, 6), (4, 9),
(9, 3), (25, 3), (2, 3), (2, 8), (2, 20)}.
(v) d = 1

2 (s − 1), 1
2 (s + 1), s is odd. We have that r = e + 1 and two subcases; r = 1

2 (q − 1) and when

r = 1
2 (s + 1). First note that by Lemma 6.2, we have f = 1. If r = 1

2 (s − 1), then by Lemma 6.1, the

possible choices for q and e = 1
2 (s−1)−1 are (q, e) ∈ {(2, 4), (3, 4), (2, 10), (2, 12)}. If r = 1

2 (s+1), then by

Lemma 6.1, the possible choices for q and e = 1
2 (s+1)−1 are (q, e) ∈ {(2, 4), (2, 12), (2, 18), (3, 6), (5, 6)}.

Here is a table which summarises the valid cases obtained from Table 8 of [13].

Case S d e q Case S d e q Case S d e q
(a) PSL3(2) 6,7 6 3,5 (e)(iv) PSL2(11) 5,6 5 4 (e)(v) PSL2(11) 5,6 4 2,3

PSL3(3) 12,13 12 2 PSL2(13) 6,7 6 4 PSL2(23) 11,12 10 2
(b) PSU3(3

2) 6,7 6 5 PSL2(19) 9,10 9 4 PSL2(27) 13,14 12 2
(c) PSp4(5) 12,13 12 2 PSL2(7) 3,4 3 9 PSL2(9) 4,5 4 2
(e)(i) PSL2(8) 7,8,9 6 3,5 PSL2(7) 3,4 3 25 PSL2(25) 12,13 12 2
(e)(iii) PSL2(11) 10,11,12 10 2 PSL2(7) 3,4 3 2 PSL2(37) 18,19 18 2

PSL2(13) 12,13,14 12 2 PSL2(17) 8,9 8 2 PSL2(13) 6,7 6 3,5
PSL2(19) 18,19,20 18 2 PSL2(41) 20,21 20 2
PSL2(7) 6,7,8 6 3,5

Table 9. Possibilities arising from Table 8 of [13].

However, not all of the above cases have valid absolutely irreducible representations. For example,
PSL2(13) (or a cover thereof) does not have an absolutely irreducible 12-dimensional representation over
GF(2). We use [17], [8], and [16, Table 2] to eliminate those representations above that do not exist, and
so arrive at the following list of possibilities arising from Table 8 of [13].

Case S d e q Case S d e q Case S d e q
(a) PSL3(2) 6,7 6 3,5 (e)(iv) PSL2(11) 5 5 4 (e)(v) PSL2(23) 11 10 2

PSL3(3) 12 12 2 PSL2(13) 6 6 4 PSL2(9) 4 4 2
(b) PSU3(32) 6,7 6 5 PSL2(19) 9 9 4 PSL2(25) 12 12 2
(c) PSp4(5) 12 12 2 PSL2(7) 3,4 3 9 PSL2(37) 18 18 2
(e)(i) PSL2(8) 7 6 3 PSL2(7) 3,4 3 25 PSL2(13) 6,7 6 3

7,8 6 5 PSL2(7) 3 3 2
(e)(iii) PSL2(11) 10 10 2 PSL2(17) 8 8 2

PSL2(13) 14 12 2 PSL2(41) 20 20 2
PSL2(19) 20 18 2
PSL2(7) 6,7 6 3

6,7,8 6 5

Natural-characteristic case:
Here q = qc

0. We will show that c is at most 2 and has the following values in each of the cases below:

G(∞) d e p c G(∞) d e p c

SL2(q3
0) 8 6 – 1 6 6 p = 2 1

SL3(q2
0) 9 6 q0 ≡ 1 (mod 3) 1 PSU3(q2

0) 8 6 p 6= 3 1
PSL3(q

2
0) 9 6 q0 6= 1 (mod 3) 1 7 6 p = 3 1

2 · Ω7(q0) 8 6 p odd 1 Sz(q0) 4 4 p = 2 1,2
Sp6(q0) 8 6 p = 2 1 2G2(q0) 7 6 p = 3 1,2
G2(q0) 7 6 p odd 1

Table 10. Possibilities arising from Table 6 of [13].

We know that Φ∗
ef (p) divides |G| and G/(G ∩ Z) is a subgroup of Aut(S). So Φ∗

ef (p) divides

|Z||S||Out(S)|. Now |Z| = q − 1 and thus Φ∗
ef (p) divides |S||Out(S)|. Here is a list of the values of

|Out(S)| corresponding to Table 10:
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S |Out(S)| e S |Out(S)| e

PSL2(q
3
0) 3f/c or 6f/c 6 G2(q0) f/c or 2f/c 6

PSL3(q
2
0) 4f/c 6 PSU3(q2

0) 2f/c or 6f/c 6
PΩ7(q0) 2f/c 6 Sz(q0) 2f/c + 1 4
PSp6(q0) f/c 6 2G2(q0) 2f/c + 1 6

Table 11. List of values of |Out(S)| corresponding to Table 10.

Recall that r is a primitive prime divisor of pef + 1 and so r is at least ef + 1. Since c > 1 it follows
from the table above that r is coprime to |Out(S)| for all S in the table above. Thus r divides |S|. From
this argument, it also follows that Φ∗

ef (p) divides |S|. For S = PSL2(q
3
0), we see that |S| = q3

0(q
6
0 −1)/2 =

p3f/c(q6f/c − 1)/2. So since Φ∗
6f (p) divides |S|, it follows that c = 1. Similarly, we have c = 1 for for the

other cases, except S = Sz(q0),
2G2(q0), where the analogous argument yields c 6 2.

7. Proof of Theorem 3.2

In proving Theorem 3.2, we will need to examine the case where the transitive group admitted contains
a large classical group.

Lemma 7.1. Let q = pf where p is a prime and f is a positive integer, and let d be an integer greater
than 4. Let G be a subgroup of GLd(q), let S be a normal subgroup of G, and suppose S is one of the
following:

S Condition

SLd(q) –

Spd(q) –

SUd(q) q is a square

Ω±

d (q) P G d even

Ωd(q) P G dq odd

If G acts transitively of degree n, and n does not divide 2(q − 1) gcd(2, q − 1), then

n >
(qd/2 + 1)(qd/2−1 − 1)

q − 1
.

Proof. Let H be a point stabiliser in the action of G. If S 6 H and G 6 F 6 GLd(q), then |F : S| = |F :
G| · |G : H | · |H : S| and hence n divides |F : S|. Now

|GLd(q) : SLd(q)| = q − 1

|GSpd(q) : Spd(q)| = q − 1

|GUd(q) : SUd(q)| =
√

q + 1

|GOd(q) : Ωd(q)| = 2(q − 1)

|GO±
d (q) : Ω±

d (q)| = 2(q − 1) gcd(2, q − 1)

and n does not divide these indices. Therefore S � H . Note that

|G : H | = |G : HS||S : S ∩ H | > |S : S ∩ H |.
We will use this fact throughout.

Suppose we have the first case, S = SLd(q) 6 G 6 GLd(q). Since d > 4, we have by [9] that the
minimum degree of a nontrivial permutation representation of S is (qd − 1)/(q − 1). So in particular, we
have that |S : S ∩ H | > (qd − 1)/(q − 1), and thus |G : H | > (qd/2 + 1)(qd/2−1 − 1)/(q − 1).

Now suppose S = Spd(q) P G. Assume firstly that q > 2. Then by [9] the minimum degree of a
nontrivial permutation representation of S is qd−1/(q − 1). So in particular, we have that |S : S ∩ H | >

qd−1/(q−1). So again, we have |G : H | > (qd/2+1)(qd/2−1−1)/(q−1). Now if q = 2, we have from [9] that
the minimum degree of Spd(2) is 2d/2−1(2d/2 − 1), which is greater than |G : H | > (2d/2 + 1)(2d/2−1− 1).

Now consider the case that S = SUd(q) P G where q is a square. Then by [9], we have that the
minimum degree of S is (qd/2 − (−1)d)(qd/2−1 − (−1)d−1)/(q − 1). If d is even, then

(qd/2 − (−1)d)(qd/2−1 − (−1)d−1) = (qd/2 − 1)(qd/2−1 + 1)

which is clearly larger than (qd/2 + 1)(qd/2−1 − 1). If d is odd, then

(qd/2 − (−1)d)(qd/2−1 − (−1)d−1) = (qd/2 + 1)(qd/2−1 − 1)

and hence we obtain equality in the bound here. So overall, we have n > (qd/2 + 1)(qd/2−1 − 1).
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We turn now to the last case, S = Ωǫ
d(q) P G. Assume that d > 6. By [9], we have the following

possible minimum degrees of S:

Ωd(q), q odd, d > 5 (qd−1 − 1)/(q − 1)

Ω+
d (q), q > 2 (qd/2 − 1)(qd/2−1 + 1)/(q − 1)

Ω+
d (2) 2d/2−1(2d/2 − 1)

Ω−

d (q) (qd/2 + 1)(qd/2−1 − 1)/(q − 1)

Note, Ω5(q) (q odd) is isomorphic to Sp4(q). In each case, it is clear that the minimum degree of S is
at least (qd/2 + 1)(qd/2−1 − 1)/(q − 1). In fact, Ωd(q) has the same minimum degree as PSUd(q) when q
is square and d is odd, Ω+

d (q) has the same minimum degree as PSUd(q) when q is square and d is even,

Ω+
d (2) has the same minimum degree as Spd(2), and the last case, Ω−

d (q) attains equality in the bound.

Now suppose d = 6 and S = Ω±
d (q). Note that the minimum degree of Ω±

d (q) is at least the minimum

degree of PΩ±
d (q). By [9] we have the following information:

S Minimum Degree

PΩ+
6 (2) 8

PΩ+
6 (q), q 6= 2 q3 + q2 + q + 1

PΩ−

6 (q) (q + 1)(q3 + 1)

Note that (qd/2 + 1)(qd/2−1 − 1) = (q3 + 1)(q2 − 1), which is greater than each minimum degree in the
table above, which concludes the proof. �

Now we proceed to prove Theorem 3.2. First note that as Φ∗
e(q) divides qe − 1 but does not divide

qe/2 − 1, we have that Φ∗
e(q) divides qe/2 + 1 and hence Φ∗

e(q) also divides (qe/2 + 1)/x. Since e > 2 and
(q, e) 6= (2, 6), we know by Zsigmondy’s Theorem that Φ∗

e(q) > 1 and hence we can apply Theorem 3.1.

Classical examples:

Suppose S ∈ {SLd(q), Spd(q), SUd(q), Ω
ǫ
d(q)} with appropriate conditions on d and q, and suppose

S P G 6 GLd(q). Assume for the moment that d > 4. Since Φ∗
e(q) divides (qe/2 + 1)/x, we have

that (qe/2 + 1)/x does not divide 2(q − 1) gcd(2, q − 1). So by Lemma 7.1, we have (qe/2 + 1)/x >

(qd/2 + 1)(qd/2−1 − 1)/(q − 1). However, this implies that qd/2 + 1 > (qd/2 + 1)(qd/2−1 − 1)/(q − 1) and
hence q − 1 > qd/2−1 − 1. So 1 > d/2 − 1, which is impossible as d > 4. Therefore, d 6 4.

Suppose we have the first case, S = SLd(q) 6 G 6 GLd(q). If (d, q) = (4, 2), then by [9], the minimum
degree of S is 8. However, qd/2 + 1 = 5 and so we obatin a contradiction. So (d, q) is not (4, 2). Then
by [9], the minimum degree of a nontrivial permutation representation of S is (qd − 1)/(q − 1). So in
particular, we have that |S : S ∩ H | > (qd − 1)/(q − 1). Thus

|G : HS| 6
qe/2 + 1

(qd − 1)/(q − 1)
=

(qe/2 + 1)(q − 1)

qd − 1
.

Now qe/2−1−1 6 qd−2+qd−3+· · ·+q+1 = qd−1−1
q−1 and hence qe/2−qe/2−1+q+1 = (q−1)(qe/2−1−1) 6

qd−1 − 1. Therefore qe/2+1 − qe/2 + q 6 qd − 1 and thus (qe/2 + 1)(q − 1) 6 qd − 1. So G = HS and it
also follows that e = 2 and d = 3; a contradiction. Therefore we have ruled out the first case of examples
of classical type.

Now suppose S = Spd(q) P G (so d = 4 and 3 6 e 6 4). Suppose that q > 3. Then by [9] the
minimum degree of a nontrivial permutation representation of S is q3/(q − 1). So in particular, we have
that |S : S ∩ H | > q3/(q − 1). Thus

|G : HS| 6
(qe/2 + 1)(q − 1)

q3
6

(q2 + 1)(q − 1)

q3

which is clearly a contradiction. So q ∈ {2, 3}. By [9], the minimum degree of Sp4(3) is 27. So
27 6 qe/2 + 1 = 3e/2 + 1, but 3e/2 + 1 6 32 + 1, which is a contradiction. In the case that q = 2, we know
that Sp4(2) ∼= S6, and hence S does not have a subgroup of index dividing (qe/2 + 1)/x. Therefore we
have ruled out the second case of examples of classical type.

Now consider the case that S = SUd(q) P G where q is a square. Then by [9], we have the following
information for the minimum degrees of S:
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SU3(q), q 6= 4, 25 q3/2 + 1
SU3(2

2) 2
SU3(5

2) 50

SU4(q) (q1/2 + 1)(q3/2 + 1)

We begin at the end of the table and work upwards. Now (q1/2 + 1)(q3/2 + 1) > q2 + 1 and hence
we have that S 6= SU4(q). For the S = SU3(5

2) case, we search a little further and we use the Atlas

[8] to deduce that the two smallest degrees of the quotient PSU3(5
2) are 150 and 1000. Since SU3(5

2) is
a 3-cover of PSU3(5

2), we see that the second largest degree of SU3(5) is greater than 126 = q3/2 + 1.
Since 50 is not a divisor of 126, we see that this case does not arise. Similarly, we can rule out the case
S = SU3(2

2). We are left with the case that S = SU3(q) (q 6= 2, 5) which does arise.
Now we turn to the fourth case, d = 4 and S = Ω±

4 (q). Now, Ω+
4 (q) has order (2, q − 1)q2(q2 − 1)2/4,

which is clearly coprime to Φ∗
e(q). Therefore, we must have S = Ω−

4 (q). Moreover, the minimum degree

of S is q2 + 1 and so (qe/2 + 1)/x > q2 + 1. This implies that (qd/2 + 1)/x > q2 + 1, and hence x = 1, as
d = 4. Note also that e = 4 as the greatest common divisor of q2 + 1 and q3 − 1 is 1 or 2 (depending on
whether q is even or odd respectively).

Reducible examples:

Now |GU : HU | = |G : H |/|G(U) : H(U)| and |G(U) : H(U)| divides

qd(d−m)|GLd−m(q)| = q(d−m)(3d−m−1)/2(q − 1)(q2 − 1) · · · (qd−m − 1).

So Φ∗
e(q) is coprime to |G(U) : H(U)| and hence GU has a subgroup of index (qe/2 + 1)/y, with Φ∗

e(q)
coprime to y.

Imprimitive examples: Firstly, we apply the condition d − 2 6 e 6 d, which rules out many subcases.
If q = 2, then GL1(q) ≀ Sd

∼= Sd and G can be identified with a primitive subgroup of Sd. By using GAP,
and its library of primitive groups of small degree, we know the isomorphism type of G. By knowledge
of the maximal subgroups of small degree in An and Sn (see [11, Theorem 5.2A]), we can establish that
cases can only arise if e = 4. Therefore qe/2 + 1 = 5 and hence x = 1. Moreover, the only primitive
groups of degree 5 and 6 which have a subgroup of index (qe/2 + 1)/x are Z5, Z5 : 2, Z5 : 4, A5, and S5.

Extension field examples:

(a) Now |GL1(q
d) · d| = (qd − 1)d = (qe+1 − 1)(e + 1) and so qe/2 + 1 does not divide (qd − 1)d if

(q, e) ∈ {(2, 10), (2, 12), (2, 18), (3, 6), (5, 6)}, and so qe/2 + 1 does not divide (qd − 1)d for these values of
(q, e). Therefore (q, e) = (2, 4) or (3, 4). Now if q = 2, then x divides 5 but Φ∗

e(q) = 5, which implies that
x = 1. If q = 3, then x divides 10, and hence x ∈ {1, 2} as again Φ∗

e(q) = 5.

(b) This is mostly unchanged from Theorem 3.1 except we know that

|G ∩ GLd/b(q
b) : H ∩ GLd/b(q

b)| =
(qe/2 + 1)

xy

where y = |G ·GLd/b(q
b) : H ·GLd/b(q

b)|. Now y is a divisor of b and hence Φ∗
e/b(q

b) is coprime to y. So

G ∩ GLd/b(q
b) has a subgroup of index (qe/2 + 1)/xy and xy is coprime to Φ∗

e/b(q
b).

Symplectic type examples:

Unchanged from Theorem 3.1, except that in the first case we find by computer that G is cyclic of
order 10 and H is its trivial subgroup.

Nearly simple case:

Alternating group case:
(a) Permutation module examples: Recall from Theorem 3.1 that An 6 G 6 Sn × Z, where Z is the
subgroup of scalar matrices in GLd(q), and d is n − 1 or n − 2 according to whether p does not or does
divide n respectively. For qe = 210, 212, 218, we have the following possibilities for d and n:

qe d n qe d n

210 10 11 14 15
12 16

12 13 218 18 19
14 20

212 12 13 20 21
14 22
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Now for e ∈ {10, 12, 18}, the cases we have are qe = 2e with d = e, e + 2 and n = d + 1, d+ 2. The two
smallest nontrivial degrees of An, in this case, are n and n(n + 1)/2. It turns out that qe/2 + 1 is smaller
than n(n + 1)/2 for all cases e ∈ {10, 12, 18}. So An ∩ H 6 An−1 and n = e + 1, as in every other case,
qe/2 +1 is coprime to n. In fact, since the minimum degree of An−1 is n−1, we get that An ∩H = An−1.
By similar arguments, we can find J ∩H for each An 6 J 6 Sn ×Z. We conclude that H is the stabiliser
of G in its natural action on n elements (where Z acts trivially).

Now suppose that qe = pe = 24, 34, 36, 56. First note that given the information above, we have the
following possible values for pe, d, and n accordingly:

pe d n pe d n

24 4 5, 6 36 7 8, 9
24 6 7, 8 56 6 7
34 4 5, 6 56 7 8
34 6 7 56 8 9, 10
36 6 7

If An 6 H , then |G : H | divides |G : An|, which in turn divides |Sn×Z : An|. But this is a contradiction
as Φ∗

e(p) divides |G : H | and |Sn ×Z : An| = 2(p− 1). So An ∩H is a proper subgroup of An with index
dividing pe/2 + 1. With this fact in mind, we can eliminate some of the cases from the above table, and
we obtain the following remaining possibilities:

pe d n pe d n

24 4 5 56 6 7
34 4 5, 6 56 8 9, 10
36 6 7

Table 12. Possiblities arising for the Alternating group examples: Permutation module examples

(b) Other examples: Here we have that q = p, as e is even. By checking whether or not G has a subgroup
of index dividing qe/2 + 1 (using GAP and the Atlas [8]), we have that d = 8 and e = 6. In the cases
n = 10, n = 9, and n = 8, it turns out that x = 1. The rest follows from using GAP and the Atlas [8]
which we summarise below.

n x p H for G = An H for G = Sn

10 1 5 (A5 × A5) · 22 S5 ≀ S2

9 1 5 (A5 × A4) · 2 S5 × S4

8 1 3 S6 S6 × 2
7 1 5 Z5 : Z4 (Z5 : Z4) × 2

3 5 A5, A5 A5 × 2, S5, S5, S5

6 5 S5 S5 × 2
9 5 – A6

18 5 S6 S6

Table 13. Possibilities arising for Alternating group examples: Other examples.

Sporadic simple group case:
By using GAP and the Atlas, it was found that this case does not arise. That is, there is no example

G in this case which has a subgroup of index (qe/2 + 1)/x. To prove this, we will need the following
information in the table below:

S |Out(S)| Indices of maximal subgroups of S qe/2 + 1
M11 1 11, 12, 55, 66, 165 10, 33
M12 2 12, 66, 144, 220, 396, 495, 1320 10, 33
M22 2 22, 77, 176, 231, 330, 616, 672 33
M23 1 23, 253, 506, 1288, 1771, 40320 33
M24 1 24, 276, 759, 1288, 1771, 2024, 3795, 40320, 1457280 33
J1 1 266, 1045, 1463, 1540, 1596, 2926, 4180 513
J2 2 100, 280, 315, 525, 840, 1008, 1800, 2016, 10080 126

For all S in the table above, except for M11, there are no maximal subgroups of index dividing
(qe/2 + 1)/x in S. Since S is a normal subgroup of G, we know that |S : S ∩ H | divides |G : H |. Now
|G : H | divides |G : H |, so either S 6 H , or S = M11 and |S : S ∩ H | 6= 1. In the latter case, we have
that |S : S ∩ H | is equal to 33|H : S ∩ H |/|G : S| and divides 11. This is a contradiction as Out(S) is
trivial and so G = S. Therefore we have that if any of the cases arise here, then S 6 H . Now |G : S|
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divides |Aut(S) : S| = |Out(S)| and |G : H | divides |G : S|. So |G : H |/|G∩Z : H ∩Z| divides |Out(S)|.
However, from the table above, we see that |Out(S)| = 1, 2 and so |G : H | is at most 2|G ∩ Z : H ∩ Z|,
which in turn divides 2|Z| = 2(q − 1). However, the only common divisors of Φ∗

e(q) and 2|Z| are 1 or 2;
which is a contradiction. Therefore, this case does not arise.

Cross-characteristic case:
First we take the lists from Theorem 3.1 and list the values of |Out(S)| for each case.

S e |Out(S)| S e |Out(S)| S e |Out(S)|
PSL2(7) 6 2 PSL2(19) 9,18 2 PSL3(4) 4,6 12
PSL2(8) 6 3 PSL2(23) 10 2 PSU3(3

2) 6 2

PSL2(9) 4 4 PSL2(25) 12 4 PΩ+
8 (2) 6 6

PSL2(11) 10 2 PSL2(37) 18 2 Sp6(2) 4,6 1
PSL2(13) 6,12 2 PSL2(41) 20 2 PSp4(5) 12 2
PSL2(17) 8 2 PSL3(3) 12 2 Sz(8) 6 3

G2(3) 12 2

Table 14. Values of |Out(S)| for the cases listed in Theorem 3.1.

The general technique for ruling out a case above proceeds as follows. Since G has a subgroup of index
n = (qe/2 + 1)/x, we have that G has a subgroup (namely H) of index n/(ax) where a is a divisor of
q − 1. Therefore, S has a subgroup (namely S ∩ H) of index dividing n/(ax) (as S is normal in G). If
S 6 H , then n divides x(q − 1)|Out(S)| as

|Out(S)| = |Aut(S) : S| = |Aut(S) : G||G : S| = |Aut(S) : G||H : S||G : H |.
Since Φ∗

e(q) divides n and is coprime to x(q − 1), we have that e + 1 6 |Out(S)|. In all the cases above,
except S = PSL3(4), we see that this inequality fails. So in general, S � H if S is not PSL3(4). Assume
for now that S is not PSL3(4). Next we list the indices of the maximal subgroups of each S and check
(using the Atlas [8] and GAP) whether S has a maximal subgroup of index dividing n.

S d e q Possible values of n Indices of Max. Subgroups of S
PSL2(7), PSL3(2) 6,7 6 3 7,14,28 7,8

6,7,8 6 5 7,14,21,42 7,8
PSL2(8) 7 6 3 28 9,28,36

7,8 6 5 63,126 9,28,36
PSL2(11) 10 10 2 11,33 11,12,55
PSL2(13) 6,7 6 3 14,28 14,78,91
PSL2(19) 9 9 4 57,171 20,57,171,190

20 18 2 57,171 20,57,171,190
PSL2(25) 12 12 2 65 26,65,300,325
PSL3(3) 12 12 2 13 13,144,234
PSU3(3

2) 6,7 6 5 63,126 28,36,63
Sp6(2) 7,8 6 3 28 28,36,63,120,135,315,336,960

7,8 6 5 63,126 28,36,63,120,135,315,336,960

Table 15. Remaining possibilities for S 6= PSL3(4).

By using the Atlas [8] and GAP [12], we can determine the possible values of x and the possible
subgroups S ∩ H of S.

S e q x S ∩ H S e q x S ∩ H

Sp6(2) 6 3 1 PSU4(22) : 2 PSL2(13) 6 3 1 13 : 3
5 1 25 : A6 2 13 : 6

2 25 : S6 PSL2(19) 9 4 3 D20

PSL2(7),PSL3(2) 6 3 1 S3 9 A5, A5

2 A4, A4 18 2 3 D20

4 S4, S4 9 A5, A5

5 3 22, 22, 4 PSL2(25) 12 2 1 S5, S5

6 D8 PSL3(3) 12 2 5 32 : 2 · S4, 32 : 2 · S4

9 A4, A4 PSL3(4) 6 5 1 24 : D10, 24 : D10

18 S4, S4 6 24 : A5, 24 : A5

PSL2(8) 6 3 1 9 : 2 PSU3(3
2) 6 5 1 4 · A4, 42 · A3

5 1 22 2 4 · S4, 42 · S3

2 23

PSL2(11) 10 2 3 A5, A5

Now assume S = PSL3(4). So by Theorem 3.1, we have (q, e) ∈ {(3, 4), (3, 6), (5, 6)} and |Out(S)| = 12.
Suppose first that S 6 H . We have the following data in each case:
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q x n 12x(q − 1) q x n 12x(q − 1)
3 1 10 24 5 1 126 48

2 5 48 2 63 96
3 1 28 24 3 42 144

2 14 48 6 21 288
3 4 7 96 9 14 432

18 7 864

In all cases above, we have that n does not divide 12x(q − 1), and hence H intersects S in a proper
subgroup with index dividing n. Now the indices of maximal subgroups of S are 21, 56, 120, and 280.
So in particular, we see readily that qe = 56. By using the Atlas [8] and GAP, we can determine the
possible values of x, and the possible subgroups S ∩ H of S.

S e q d x S ∩ H

PSL3(4) 6 5 8 1 24 : D10, 24 : D10

6 24 : A5, 24 : A5

Natural-characteristic case:
For a classical simple group L, let P (L) be the smallest number n such that L has a proper subgroup

of index n. Kleidman and Liebeck give a table of the values of P (L) for various L in [19, Table 5.2A],
and we summarise what we need from this table below:

L p, q P (L)
PSL2(9) p = 3 7
PSL2(q3) q 6= 3 q3 + 1
PSL3(q2) – q4 + q2 + 1

Ω7(q) p odd, q > 5 (q6 − 1)/(q − 1)
q = 3 351

PSp6(q) p = 2, q > 2 (q6 − 1)/(q − 1)
q = 2 28

PSU3(q2) p = 5 50
p 6= 5 q3 + 1

Table 16. A list of minimal indices for some of the groups in the Natural-characteristic case.

In most of the cases in Table 16 above, we can rule them out simply by noting that all of their proper
subgroups have index larger than qe/2 + 1. For G2(q), we must look further afield. It follows by the work
of Cooperstein for p = 2 (see [10]) and Kleidman for p odd (see [22]), that all proper subgroups of G2(q)
have index greater than q3 + 1. Hence we arrive at the following possibilities:

G(∞) d e p c

SL2(q3
0) 8 6 – 1

PSU3(q2
0) 8 6 p 6= 3 1

7 6 p = 3 1
Sz(q0) 4 4 p = 2 1,2
2G2(q0) 7 6 p = 3 1,2

For the case S = PSL2(q
3), we have that the minimum degree of a nontrivial permutation representa-

tion of S is q3 + 1 and hence x = 1. We know that there is precisely one conjugacy classes of subgroups
of S of index q3 + 1; namely the point stabiliser in its natural 2-transitive action. Since G 6 Aut(S), we
have that G also has at most one conjugacy class of subgroups of S of index q3 + 1.

Similarly, if S = PSU3(q
2), then x = 1 and G has a unique conjugacy class of subgroups of S of index

q3 + 1.
Suppose S = Sz(q0) where c ∈ {1, 2}. First note that q4

0 + 1 is coprime to |S| = q2
0(q2

0 + 1)(q0 − 1)
and hence we must have c = 1. It is well known (see Kleidman’s thesis [21, §4.2], or the seminal work of
Suzuki [26]) that the index of a maximal subgroup of S is at least q2 + 1 and hence x = 1. In fact, G has
a unique action on q2 + 1 points; namely the natural 2-transitive action of G on the Suzuki-Tits ovoid
(see [21, Theorem 4.2]).

Suppose S = 2G2(q0) where c ∈ {1, 2}. First note that q6
0 + 1 is coprime to |S| = q3

0(q3
0 + 1)(q0 − 1)

and hence we must have c = 1. It is well known (see Kleidman’s thesis [21, §4.1], or his published work
[23]) that the index of a maximal subgroup of S is at least q3 + 1, and hence x = 1. In fact, G has a
unique action on q3 + 1 points; namely the natural 2-transitive action of G on the Ree-Tits ovoid (see
[21, Theorem 4.1]).

8. An application to a conjecture of Cameron and Liebler

In 1982, Cameron and Liebler [7] studied collineation groups G of finite projective spaces PGd−1(q) of
(projective) dimension at least 3 with equally many orbits on points and on lines. (Thus d > 4.) They
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showed that such a group has order divisible by (qd−1 − 1)/ gcd(qd−1 − 1, q2 − 1) and that any maximal
subgroup of PΓLd(q) containing G also has equally many orbits on points and on lines. They conjectured
that, if irreducible, such a group would be transitive on lines, and so by earlier results of Kantor [18] and
Cameron and Kantor [6], the group would either: (i) contain PSLd(q), (ii) be ΓL1(2

5) with d = 5 and
q = 2, or (iii) be A7 with d = 4 and q = 2. Here we prove that conjecture. In [25], a more involved proof
of this conjecture can be found for the case where d > 6, which also uses primitive prime divisors and
the classification of finite simple groups.

Theorem 8.1. If G is an irreducible collineation group of PGd−1(q), d > 4, with equally many orbits on
points and on lines, then one of the following holds:

(a) G contains PSLd(q);
(b) d = 5, q = 2, and G = ΓL1(2

5); or
(c) d = 4, q = 2, and G = A7.

Proof. By a result of Cameron and Liebler [7], (qd−1 − 1)/ gcd(qd−1 − 1, q2 − 1) divides the order of G.
Hence, if q = pf , p prime, G∩PGLd(q) has order divisible by Φ∗

(d−1)f (p). By Theorem 3.1, the following

possibilities for the preimage Ĝ of G ∩ PGLd(q) in GLd(q) arise: Classical, Imprimitive, Extension field,
and Nearly simple examples.

In the Classical examples case, we have that Ωd(q) is normalised by Ĝ. However, a maximal subgroup
of PΓLd(q) normalising PΩd(q) has 3 orbits on points (namely: totally singular points, those points
whose perp with respect to the defining orthogonal polarity intersects the associated parabolic quadric
in a hyperbolic quadric, and those points whose perp intersects in an elliptic quadric) and at least 4 on
lines (namely: those lines which meet the parabolic quadric in 0, 1, 2, or q + 1 points respectively). So
no Classical examples arise.

In the Imprimitive examples case, we have that qd is 25, 213, or 35. The first two cases give us subgroups
of Ωd(2), which has 3 orbits on points and 4 on lines (which can be easily verified by computer). In the
last case, note that GL1(3) ≀ S5 has 5 orbits on points and 12 on lines. Hence no Imprimitive example
arises.

In the Extension field examples, we have that G = ΓL1(2
5) with d = 5 and q = 2, which appears in

the statement of the theorem.
Now we look at the subcases of the Nearly simple examples. In the Alternating Group case, we have

only A7, d = 4, and q = 2; and it appears in the statement of the theorem. In the Sporadic Group
case, we have only M11, d = 5, and q = 3; and it has 2 orbits on points and 4 on lines. In the Cross-
characteristic case, we are left with PSL2(13), d = 7, and q = 3; and it has 9 orbits on points and 156
on lines. Finally, in the Natural-characteristic case, we have three families of groups having e = d − 1;
namely G2(q), PSU3(q

2), and 2G2(q0). These are all subgroups of Ω7(q), which has 3 orbits on points
and 4 on lines, as noted previously. �
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